Arid Land Geography ›› 2023, Vol. 46 ›› Issue (5): 700-710.doi: 10.12118/j.issn.1000-6060.2022.395
• Climatology and Hydrology • Previous Articles Next Articles
ZHANG Gangdong1,2(),BAO Gang1,2(),YUAN Zhihui1,2,WEN Durina1,2
Received:
2022-08-13
Revised:
2022-09-30
Online:
2023-05-25
Published:
2023-06-05
ZHANG Gangdong, BAO Gang, YUAN Zhihui, WEN Durina. Effects of asymmetric warming of daytime and nighttime on the start of growing season on the Mongolian Plateau from 2001 to 2020[J].Arid Land Geography, 2023, 46(5): 700-710.
Tab. 1
Comparison of the results in this study with those calculated by other methods"
研究区 | 方法 | 年份 | 返青期/d | 文献 |
---|---|---|---|---|
蒙古高原 | Logistic曲线曲率极值法和动态阈值法等 | 2001—2017 | 105~140 | [ |
蒙古国 | 动态阈值法 | 2001—2019 | 110~150 | [ |
蒙古高原 | Logistic曲线曲率极值法 | 1982—2011 | 105~140 | [ |
内蒙古自治区 | 动态阈值法 | 1982—2013 | 120~160 | [ |
中国北方草地 | 动态阈值法 | 1983—2015 | 100~130 | [ |
[1] |
Piao S L, Friedlingstein P, Ciais P, et al. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades[J]. Global Biogeochemical Cycles, 2007, 21(3): 128911666, doi: 10.1029/2006gb002888.
doi: 10.1029/2006gb002888 |
[2] |
Wu D H, Zhao X, Liang S L, et al. Time-lag effects of global vegetation responses to climate change[J]. Global Change Biology, 2015, 21(9): 3520-3531.
doi: 10.1111/gcb.12945 pmid: 25858027 |
[3] |
Yu H Y, Luedeling E, Xu J C. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 2010, 107(51): 22151-22156.
doi: 10.1073/pnas.1012490107 |
[4] |
Shen M G, Piao S L, Chen X Q, et al. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau[J]. Global Change Biology, 2016, 22(9): 3057-3066.
doi: 10.1111/gcb.13301 pmid: 27103613 |
[5] |
Liu Q, Fu Y S, Zhu Z C, et al. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology[J]. Global Change Biology, 2016, 22(11): 3702-3711.
doi: 10.1111/gcb.13311 pmid: 27061925 |
[6] |
Welch J R, Vincent J, Auffhammer M, et al. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures[J]. Proceedings of the National Academy of Sciences, 2010, 107(33): 14562-14567.
doi: 10.1073/pnas.1001222107 |
[7] |
Badeck F W, Bondeau A, Böttcher K, et al. Responses of spring phenology to climate change[J]. New Phytologist, 2004, 162(2): 295-309.
doi: 10.1111/nph.2004.162.issue-2 |
[8] |
Zhu Z C, Piao S L, Myneni R B, et al. Greening of the earth and its drivers[J]. Nature Climate Change, 2016, 6(8): 791-795.
doi: 10.1038/NCLIMATE3004 |
[9] |
Cong N, Shen M G, Yang W, et al. Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland[J]. International Journal of Biometeorology, 2017, 61(8): 1433-1444.
doi: 10.1007/s00484-017-1321-5 pmid: 28247125 |
[10] | Zhang B W, Cui L L, Shi J, et al. Vegetation dynamics and their response to climatic variability in China[J]. Advances in Meteorology, 2017, 2017(14): 1-10. |
[11] | IPCC. Climate Change 2022: Impacts, adaptation, and vulnerability[R]. Cambridge: Cambridge University Press, 2022. |
[12] |
Davy R, Esau I, Chernokulsky A V, et al. Diurnal asymmetry to the observed global warming[J]. International Journal of Climatology, 2017, 37(1): 79-93.
doi: 10.1002/joc.2017.37.issue-1 |
[13] |
Peng S S, Piao S L, Ciais P, et al. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation[J]. Nature, 2013, 501(7465): 88-92.
doi: 10.1038/nature12434 |
[14] |
Ma L Q, Xia H M, Meng Q M. Spatiotemporal variability of asymmetric daytime and night-time warming and its effects on vegetation in the Yellow River Basin from 1982 to 2015[J]. Sensors (Basel), 2019, 19(8): 1832, doi: 10.3390/s19081832.
doi: 10.3390/s19081832 |
[15] |
Xu L, Myneni R B, Chapin Iii F S, et al. Temperature and vegetation seasonality diminishment over northern lands[J]. Nature Climate Change, 2013, 3(6): 581-586.
doi: 10.1038/nclimate1836 |
[16] |
Piao S L, Tan J G, Chen A P, et al. Leaf onset in the northern hemisphere triggered by daytime temperature[J]. Nature Communications, 2015, 6(1): 6911, doi: 10.1038/ncomms7911.
doi: 10.1038/ncomms7911 |
[17] |
Shen X J, Liu B H, Henderson M, et al. Asymmetric effects of daytime and nighttime warming on spring phenology in the temperate grasslands of China[J]. Agricultural and Forest Meteorology, 2018, 259: 240-249.
doi: 10.1016/j.agrformet.2018.05.006 |
[18] |
Luo M, Meng F H, Sa C L, et al. Response of vegetation phenology to soil moisture dynamics in the Mongolian Plateau[J]. Catena, 2021, 206: 105505, doi: 10.1016/j.catena.2021.105505.
doi: 10.1016/j.catena.2021.105505 |
[19] | 魏云洁, 甄霖, Ochirbat Batkhishig, 等. 蒙古高原生态服务消费空间差异的实证研究[J]. 资源科学, 2009, 31(10): 1677-1684. |
[Wei Yunjie, Zhen Lin, Ochirbat Batkhishig, et al. Empirical study on consumption of ecosystem services and its spatial differences over the Mongolian Plateau[J]. Resources Science, 2009, 31(10): 1677-1684. ] | |
[20] | 刘钟龄. 蒙古高原景观生态区域的分析[J]. 干旱区资源与环境, 1993, 7(3): 256-261. |
[Liu Zhongling. Analysis of landscape ecoregion on the Mongolian Plateau[J]. Journal of Arid Land Resources & Environment, 1993, 7(3): 256-261. ] | |
[21] |
杜佳梦, 包刚, 佟斯琴, 等. 1982—2015年蒙古国植被覆盖变化及其与气候变化和人类活动的关系[J]. 草业学报, 2021, 30(2): 1-13.
doi: 10.11686/cyxb2020311 |
[Du Jiameng, Bao Gang, Tong Siqin, et al. Variations in vegetation cover and its relationship with climate change and human activities in Mongolia during the period[J]. Acta Prataculturae Sinica, 2021, 30(2): 1-13. ]
doi: 10.11686/cyxb2020311 |
|
[22] | 温都日娜, 包玉海, 银山, 等. 2000—2014年蒙古高原植被覆盖时空变化特征及其对地表水热因子的响应[J]. 冰川冻土, 2017, 39(6): 1345-1356. |
[Wen Durina, Bao Yuhai, Yin Shan, et al. The spatial and temporal variation of vegetation cover in Mongolian Plateau and its response to surface hydrothermal factors from 2000 through 2014[J]. Journal of Glaciology and Geocryology, 2017, 39(6): 1345-1356. ] | |
[23] |
包刚, 包玉海, 覃志豪, 等. 近10年蒙古高原植被覆盖变化及其对气候的季节响应[J]. 地理科学, 2013, 33(5): 613-621.
doi: 10.13249/j.cnki.sgs.2013.05.613 |
[Bao Gang, Bao Yuhai, Qin Zhihao, et al. Vegetation cover changes in Mongolian Plateau and its response to seasonal climate changes in recent 10 years[J]. Scientia Geographica Sinica, 2013, 33(5): 613-621. ]
doi: 10.13249/j.cnki.sgs.2013.05.613 |
|
[24] |
Piao S L, Cui M D, Chen A P, et al. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau[J]. Agricultural and Forest Meteorology, 2011, 151(12): 1599-1608.
doi: 10.1016/j.agrformet.2011.06.016 |
[25] |
Yu F F, Price K, Ellis J, et al. Response of seasonal vegetation development to climatic variations in eastern Central Asia[J]. Remote Sensing of Environment, 2003, 87(1): 42-54.
doi: 10.1016/S0034-4257(03)00144-5 |
[26] | 穆少杰, 李建龙, 陈奕兆, 等. 2001—2010年内蒙古植被覆盖度时空变化特征[J]. 地理学报, 2012, 67(9): 1255-1268. |
[Mu Shaojie, Li Jianlong, Chen Yizhao, et al. Spatial differences of variations of vegetation coverage in Inner Mongolia during 2001—2010[J]. Acta Geographica Sinica, 2012, 67(9): 1255-1268. ] | |
[27] | 丁明军, 张镱锂, 孙晓敏, 等. 近10年青藏高原高寒草地物候时空变化特征分析[J]. 科学通报, 2012, 57(33): 3185-3194. |
[Ding Mingjun, Zhang Yili, Sun Xiaomin, et al. Temporal and spatial variation of alpine grassland phenology over Qinghai-Tibet Plateau in recent 10 years[J]. Chinese Science Bulletin, 2012, 57(33): 3185-3194. ] | |
[28] |
Garonna I, Jong R D, Wit A D, et al. Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982—2011)[J]. Global Change Biology, 2014, 20(11): 3457-3470.
doi: 10.1111/gcb.12625 pmid: 24797086 |
[29] |
Roerink G R, Menenti M, Verhoef W. Reconstructing cloudfree NDVI composites using Fourier analysis of time series[J]. International Journal of Remote Sensing, 2010, 21(9): 1911-1917.
doi: 10.1080/014311600209814 |
[30] |
Hou X H, Gao S A, Niu Z, et al. Extracting grassland vegetation phenology in north China based on cumulative spot-vegetation NDVI data[J]. International Journal of Remote Sensing, 2014, 35(9): 3316-3330.
doi: 10.1080/01431161.2014.903437 |
[31] |
Piao S L, Fang J Y, Zhou L M, et al. Variations in satellite-derived phenology in China’s temperate vegetation[J]. Global Change Biology, 2006, 12(4): 672-685.
doi: 10.1111/gcb.2006.12.issue-4 |
[32] |
Bao G, Chen J Q, Chopping M, et al. Dynamics of net primary productivity on the Mongolian Plateau: Joint regulations of phenology and drought[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 81: 85-97.
doi: 10.1016/j.jag.2019.05.009 |
[33] | 元志辉, 雷军, 包刚, 等. 土地利用/覆盖变化对浑善达克沙地植被覆盖度的影响[J]. 水土保持学报, 2016, 30(6): 330-338. |
[Yuan Zhihui, Lei Jun, Bao Gang, et al. The impacts of land use/cover change on vegetation coverage in the Otindag Sandland[J]. Journal of Soil and Water Conservation, 2016, 30(6): 330-338. ] | |
[34] | 张戈丽, 徐兴良, 周才平, 等. 近30年来呼伦贝尔地区草地植被变化对气候变化的响应[J]. 地理学报, 2011, 66(1): 47-58. |
[Zhang Geli, Xu Xingliang, Zhou Caiping, et al. Responses of grassland vegetation to climatic variations on different temporal scales in Hulun Buir Grassland in the past 30 years[J]. Scientia Geographica Sinica, 2011, 66(1): 47-58. ] | |
[35] | 姜康, 包刚, 乌兰图雅, 等. 2001—2017年蒙古高原不同植被返青期变化及其对气候变化的响应[J]. 生态学杂志, 2019, 38(8): 2490-2499. |
[Jiang Kang, Bao Gang, Wulantuya, et al. Variations in spring phenology of different vegetation types in the Mongolian Plateau and its responses to climate change during 2001—2017[J]. Chinese Journal of Ecology, 2019, 38(8): 2490-2499. ] | |
[36] |
邵亚婷, 王卷乐, 严欣荣. 蒙古国植被物候特征及其对地理要素的响应[J]. 地理研究, 2021, 40(11): 3029-3045.
doi: 10.11821/dlyj020210139 |
[Shao Yating, Wang Juanle, Yan Xinrong. The phenological characteristics of Mongolian vegetation and its response to geographical elements[J]. Geographical Research, 2021, 40(11): 3092-3045. ]
doi: 10.11821/dlyj020210139 |
|
[37] | 包刚, 包玉龙, 阿拉腾图娅, 等. 1982—2011年蒙古高原植被物候时空动态变化[J]. 遥感技术与应用, 2017, 32(5): 866-874. |
[Bao Gang, Bao Yulong, A Latengtuya, et al. Spatio-temporal dynamics of vegetation phenology in the Mongolian Plateau during 1982—2011[J]. Remote Sensing Technology and Application, 2017, 32(5): 866-874. ] | |
[38] | 黄文琳, 张强, 孔冬冬, 等. 1982—2013年内蒙古地区植被物候对干旱变化的响应[J]. 生态学报, 2019, 39(13): 4953-4965. |
[Huang Wenlin, Zhang Qiang, Kong Dongdong, et al. Response of vegetation phenology to drought in Inner Mongolia from 1982 to 2013[J]. Acta Ecologica Sinica, 2019, 39(13): 4953-4965. ] | |
[39] |
秦格霞, 吴静, 李纯斌, 等. 中国北方草地植被物候变化及其对气候变化的响应[J]. 应用生态学报, 2019, 30(12): 4099-4107.
doi: 10.13287/j.1001-9332.201912.015 |
[Qin Gexia, Wu Jing, Li Chunbin, et al. Grassland vegetation phenology change and its response to climate changes in north China[J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4099-4107. ]
doi: 10.13287/j.1001-9332.201912.015 |
|
[40] | 元志辉, 银山, 萨楚拉, 等. 近20 a呼和浩特市城市化对植被物候的影响[J]. 干旱区地理, 2022, 45(6): 1890-1898. |
[Yuan Zhihui, Yin Shan, Sa Chula, et al. Effects of urbanization on vegetation phenology in Hohhot in the recent 20 years[J]. Arid Land Geography, 2022, 45(6): 1890-1898. | |
[41] |
Xia J Y, Chen J Q, Piao S L, et al. Terrestrial carbon cycle affected by non-uniform climate warming[J]. Nature Geoscience, 2014, 7(3): 173-180.
doi: 10.1038/ngeo2093 |
[42] |
Zhou L M, Dai A G, Dai Y J, et al. Spatial dependence of diurnal temperature range trends on precipitation from 1950 to 2004[J]. Climate Dynamics, 2008, 32(2): 429-440.
doi: 10.1007/s00382-008-0387-5 |
[43] |
Du Z Q, Zhao J, Liu X J, et al. Recent asymmetric warming trends of daytime versus nighttime and their linkages with vegetation greenness in temperate China[J]. Environmental Science and Pollution Research, 2019, 26(35): 35717-35727.
doi: 10.1007/s11356-019-06440-z |
[44] |
Schwartz M D, Hanes J M. Continental-scale phenology: Warming and chilling[J]. International Journal of Climatology, 2009, 30(11): 1595-1598.
doi: 10.1002/joc.2014 |
[45] |
Vitasse Y, Lenz A, Korner C. The interaction between freezing tolerance and phenology in temperate deciduous trees[J]. Frontiers in Plant Science, 2014, 5: 541, doi: 10.3389/fpls.2014.00541.
doi: 10.3389/fpls.2014.00541 pmid: 25346748 |
[46] |
Yi S H, Li N, Xiang B, et al. Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research: Biogeosciences, 2013, 118(3): 1186-1199.
doi: 10.1002/jgrg.v118.3 |
[1] | ZHANG Gangdong, BAO Gang, HUANG Xiaojun, YUAN Zhihui, WEN Durina. Asymmetrical warming in winter and spring and its effect on start of growing season and spring NDVI in Mongolia [J]. Arid Land Geography, 2023, 46(8): 1238-1249. |
[2] | GAO Yanzhe, Alatengtuya , TAN Na, Aorigele . Lake changes and their influence factors in the Mongolian Plateau from 2000 to 2020 [J]. Arid Land Geography, 2023, 46(2): 191-200. |
[3] | ZHANG Sarilang, Wulantuya , Buhe , Yongmei , Siqinchaoketu , ZHANG Weiqing. Bibliometric analysis of land desertification research on the Mongolian Plateau in recent 40 years [J]. Arid Land Geography, 2023, 46(12): 1984-1994. |
[4] | CHEN Chunbo,LI Gangyong,PENG Jian. Spatiotemporal analysis of net primary productivity for natural grassland in Xinjiang in the past 20 years [J]. Arid Land Geography, 2022, 45(2): 522-534. |
[5] | YANG Xiaoying,Yu Shan,Du Wala,Hong Mei. Risk assessment of grassland fire on the Mongolian Plateau [J]. Arid Land Geography, 2021, 44(4): 1032-1044. |
[6] | QIN Haojun, HAN Yongxiang. Change of above ground net primary productivity of grassland over the Mongolian Plateau in recent 56 years [J]. Arid Land Geography, 2019, 42(4): 914-922. |
[7] | JIANG Kang, BAO Gang, WULANTUYA, JIANG Li, WANG Mulan. Spatiotemporal changes of snow cover in Mongolian Plateau based on MODIS data [J]. Arid Land Geography, 2019, 42(4): 782-789. |
|