收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2017, Vol. 40 ›› Issue (5): 997-1004.

• 气候与水文 • 上一篇    下一篇

黄土高原1959-2015年潜在蒸发量的时空变化

韩盟伟1, 赵广举1,2, 穆兴民1,2, 安正锋1, 高鹏1,2, 孙文义1,2   

  1. 1 西北农林科技大学黄土高原土壤侵蚀与旱地农业国家重点实验室, 陕西 杨凌 712100;
    2 中国科学院水利部水土保持研究所, 陕西 杨凌 712100
  • 收稿日期:2017-03-28 修回日期:2017-06-29 出版日期:2017-09-25
  • 通讯作者: 赵广举(1980-),男,河南驻马店人,研究员,博士.主要研究方向:流域水文过程与土壤侵蚀模拟.Email:gjzhao@ms.iswc.ac.cn
  • 作者简介:韩盟伟(1991-),男,陕西咸阳人,硕士研究生.主要研究方向:土壤侵蚀与水土保持.Email:2317667922@qq.com
  • 基金资助:

    国家重点研发计划(2016YFC0402401);国家自然科学基金(41671279;41671285)

Spatial and temporal variations of potential evapotranspiration on the Loess Plateau during 1959-2015

HAN Meng-wei1, ZHAO Guang-ju1,2, MU Xing-min1,2, AN Zheng-feng1, GAO Peng1,2, SUN Wen-yi1,2   

  1. 1 State Key Laboratory of Soil Erosion and Dryland Framing on the Loess Plateau, Northwest A & F University, Yangling 712100, Shaanxi, China;
    2 Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Yangling 712100, Shaanxi, China
  • Received:2017-03-28 Revised:2017-06-29 Online:2017-09-25

摘要: 蒸发是水文循环的一个重要过程,也是影响区域水资源量的重要因素。通过选取黄土高原50个气象站1959-2015年的逐月气象资料,应用FAO修正的Penman-Monteith模型计算黄土高原潜在蒸发量,采用Mann-Kendall检验与空间插值分析其时空变化特征,探讨各气象要素对潜在蒸发量的影响。结果表明:黄土高原多年平均潜在蒸发量在780~1 470 mm之间,由西北向东南递减。1959-2015年,黄土高原潜在蒸发量变化率为5.64 mm·(10 a)-1;春季变化率最大,其次为夏季和秋季,冬季最小。从空间分布看,西部、中北部地区和东南部地区潜在蒸发量均呈非显著性增加趋势。太阳净辐射量增加是黄土高原潜在蒸发量增加的主导因子,其次为实际水汽压、风速和温度。

关键词: 黄土高原, Penman-Monteith模型, 时空变化, 潜在蒸发量

Abstract: Evaporation is an important component of hydrological cycle and key input in hydrological models. Quantification of spatial-temporal variation of potential evapotranspiration(PET)is helpful for better understanding climate change and its influence on hydrological cycle and water resources. In this study, the FAO Penman-Monteith was used to estimate the spatial-temporal variation of PET in the Loess Plateau with monthly observed data at 50 meteorological stations during 1959-2015 obtained from the National Meteorological Information Center of China Meteorological Administration. The Spline method was applied for interpolation to obtain the spatial distribution of PET. The sensitivity coefficients method was employed to explore the contribution of key meteorological variables to the variation of PET. The results show that mean annual PET of the Loess Plateau ranged from 780 mm to 1 470 mm and decreased from northwest to southeast. Seasonally, PET in summer, spring, autumn and winter decreased successively. During 1959-2015, PET showed an upward trend of 5.64 mm·(10 a) -1 in the Loess Plateau. PET showed the highest increasing trend in spring[7.37 mm·(10 a) -1], followed by summer, autumn and winter. The west part, middle-north part and south-east part of the Loess Plateau showed non-significant increasing trends in PET. The increase of solar radiation is the dominant factor for the increase of PET, followed by actual water vapor pressure, wind speed and temperature. The innovation of this study is using the sensitivity coefficients method to analyze the effects of different meteorological variables on potential evapotranspiration. This study analyzed the spatiotemporal changes of regional PET and the influence of each meteorological variable. The results are favorable to the water resources planning and management, and provide scientific basis for the efficient agricultural water resources exploitation.

Key words: the Loess Plateau, Penman-Monteith model, spatial and temporal variation, potential evapotranspiration

中图分类号: 

  • P426.2