收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2026, Vol. 49 ›› Issue (1): 1-12.doi: 10.12118/j.issn.1000-6060.2025.083 cstr: 32274.14.ALG2025083

• 气候与水文 • 上一篇    下一篇

黄土高原植被抗旱性监测及影响因素分析

程西安1(), 牛全福1,2,3(), 王刚1, 邵东虎1, 朱登峰1, 王振宇1   

  1. 1 兰州理工大学土木工程学院,甘肃 兰州 730050
    2 甘肃省应急测绘工程研究中心,甘肃 兰州 730050
    3 甘肃大禹九洲空间信息科技有限责任公司院士专家工作站,甘肃 兰州 730050
  • 收稿日期:2025-02-21 修回日期:2025-03-23 出版日期:2026-01-25 发布日期:2026-01-18
  • 通讯作者: 牛全福(1973-),男,博士,教授,主要从事环境遥感等方面的研究. E-mail: Niuqf@lut.edu.cn
  • 作者简介:程西安(2001-),男,硕士研究生,主要从事环境遥感等方面的研究. E-mail: 17795734293@163.com
  • 基金资助:
    国家自然科学基金项目(42261069)

Monitoring and influencing factors of vegetation drought resistance on the Loess Plateau

CHENG Xi’an1(), NIU Quanfu1,2,3(), WANG Gang1, SHAO Donghu1, ZHU Dengfeng1, WANG Zhenyu1   

  1. 1 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
    2 Gansu Province Emergency Surveying and Mapping Engineering Research Center, Lanzhou 730050, Gansu, China
    3 Academician Expert Workstation of Gansu Dayu Jiuzhou Space Information Technology Co. Ltd., Lanzhou 730050, Gansu, China
  • Received:2025-02-21 Revised:2025-03-23 Published:2026-01-25 Online:2026-01-18

摘要:

随着气候改变和人类活动的不断加剧,黄土高原干旱频发并且危害日益严重,对区域植被的生长状况构成了严重制约。基于2000—2022年标准化降水蒸散指数、归一化植被指数和总初级生产力数据,通过最大相关系数法建立滞后时间、影响程度和植被恢复力3个植被抗旱性指标,构建植被抗旱性综合监测方法来探究植被在干旱情况下的响应及植被抗旱性大小。结果表明:(1)黄土高原滞时为1个月时表现最为明显,73%区域最大相关系数在0.4以上,随着滞时的增加,相关系数呈现由南向北递减趋势。(2)植被在黄土高原南温带南部与东部和高原气候区北部抗旱性主要为0.0~0.2,在中温带中部抗旱性达到0.2~0.4。总体来看,植被抗旱性基本规律为灌木最大,其次是森林和农田,最后为草地。(3)在线性关系中,相关性最高的3个因子分别为地表温度、降雨量和酸碱度,这与最优参数地理探测器探测结果在各个气候区主要影响因子基本相同。研究植物抗旱性综合监测方法有助于了解植被抗旱性规律,对帮助降低灾害风险具有借鉴意义。

关键词: 相关系数, 植被抗旱性, 干旱指数, 遥感, 黄土高原

Abstract:

With intensifying climate change and human activities, the increasing frequency of droughts and their impacts on the Loess Plateau of China have severely constrained regional vegetation growth. Using data from 2000 to 2022, including standardized precipitation evapotranspiration index, normalized difference vegetation index, and gross primary productivity data, three vegetation drought resistance indices were established, namely lag time, impact degree, and vegetation resilience, using the maximum correlation coefficient method. A comprehensive monitoring framework was then constructed to assess vegetation responses under drought conditions and quantify drought resistance. Results revealed three key insights. (1) The Loess Plateau exhibited the most pronounced lag time at 1 month, with maximum correlation coefficients exceeding 0.4 in 73% areas and correlation coefficients decreasing from south to north as lag increases. (2) Vegetation drought resistance ranged from 0 to 0.2 in the southern and eastern of southern temperate and northern plateau climate zones of the Loess Plateau and 0.2-0.4 in the middle temperate zone. Overall, drought resistance was highest in shrubs, followed by forest and farmland, and lowest in grassland. (3) Land surface temperature, rainfall, and soil pH showed the strongest linear correlations with vegetation drought resistance, consistent with the main influencing factors identified via optimal parameter geographic detector analyses across climate zones. This comprehensive monitoring approach enhances understanding of vegetation drought resistance patterns and provides valuable guidance for reducing ecological risk under future drought conditions.

Key words: correlation coefficient, vegetation drought resistance, drought index, remote sensing, Loess Plateau