收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2024, Vol. 47 ›› Issue (3): 433-444.doi: 10.12118/j.issn.1000-6060.2023.375

• 生物与土壤 • 上一篇    下一篇

组合光学和微波遥感的耕地土壤含盐量反演

刘瑞亮1(), 贾科利1(), 李小雨1, 陈睿华1, 王怡婧1, 张俊华2   

  1. 1.宁夏大学地理科学与规划学院,宁夏 银川 750021
    2.宁夏大学生态学院,宁夏 银川 750021
  • 收稿日期:2023-07-21 修回日期:2023-08-25 出版日期:2024-03-25 发布日期:2024-03-29
  • 通讯作者: 贾科利(1975-),男,博士,教授,主要从事3S与土地利用. E-mail: jiakl@nxu.edu.cn
  • 作者简介:刘瑞亮(1998-),女,硕士研究生,主要从事遥感监测与分析研究. E-mail: liuruiliang2022@163.com
  • 基金资助:
    国家自然科学基金项目(42061047);国家自然科学基金项目(42067003);国家重点研发计划项目(2021YFD1900602);宁夏回族自治区重点研发计划项目(2021BEG03002)

Inversion of soil salt content by combining optical and microwave remote sensing in cultivated land

LIU Ruiliang1(), JIA Keli1(), LI Xiaoyu1, CHEN Ruihua1, WANG Yijing1, ZHANG Junhua2   

  1. 1. College of Geographical Sciences and Planning, Ningxia University, Yinchuan 750021, Ningxia, China
    2. College of Ecology, Ningxia University, Yinchuan 750021, Ningxia, China
  • Received:2023-07-21 Revised:2023-08-25 Published:2024-03-25 Online:2024-03-29

摘要:

耕地保护关系到国家粮食安全和经济社会可持续发展,对生态环境保护具有重要作用,快速精准的获取耕地土壤盐分含量及空间分布信息是耕地保护的必然要求。以宁夏平罗县为研究区,利用Landsat 9 OLI和Sentinel-1遥感影像,提取光谱指数和雷达极化组合指数,基于变量投影重要性法与灰度关联法筛选特征变量,然后运用反向传播神经网络、支持向量机和随机森林3种机器学习算法构建模型,并用最佳模型反演耕地土壤含盐量空间分布情况。结果表明:(1) 利用变量投影重要性法筛选变量建立的模型验证集决定系数(R2)大于灰度关联法筛选变量建立的模型。(2) 利用随机森林算法,组合光谱指数和雷达极化组合指数协同反演模型效果最佳,建模集R2为0.791,均方根误差(RMSE)为1.016,R2较单一数据源模型分别提高0.065和0.085,RMSE分别降低0.147和0.189;验证集R2为0.780,RMSE为1.132,R2较单一数据源模型分别提高0.091和0.237,RMSE分别降低0.175和0.377。(3) 平罗县耕地轻度盐渍化和中度盐渍化土壤分布范围广,占比分别为23.77%和33.54%,重度盐渍化达15.37%。研究结果发现,组合多源遥感数据建模能够有效提高土壤含盐量反演精度,可为干旱区耕地土壤含盐量的反演和当地农业可持续发展提供有效的技术参考。

关键词: 光学和微波遥感, 机器学习, 耕地, 土壤含盐量反演

Abstract:

The safeguarding of cultivated land is paramount in ensuring national food security, sustainable economic and social development, and the preservation of the ecological environment. Rapid and accurate acquisition of cultivated soil salinity and spatial distribution information is imperative for the protection of cultivated land. This study focuses on cultivated land in Pingluo County, Ningxia, China, as the research object and discusses the feasibility of combining optical remote sensing and microwave remote sensing to predict the accuracy of soil salt content compared with single remote sensing data. The methodology involved the extraction of the spectral indices from Landsat 9 OLI and radar polarization combination indices from Sentinel-1. Variable projection importance and gray correlation degree were used to screen and combine characteristic variables. Three machine learning algorithms (back propagation neural network, support vector machine, and random forest) were used to construct the soil salt content prediction model. The best model was used to predict the spatial distribution of the soil salt content in cultivated land. The results show the following facts: (1) The model, validated using the variable projection importance method for screening variables, generally exhibited a higher determination coefficient (R2) than the model established using the gray correlation method for characteristic variables. (2) Using the random forest algorithm, the model combining the spectral index and radar polarization combination index demonstrated the best effect. The modeling set exhibited an R2 of 0.791 and a root mean square error (RMSE) of 1.016. This represented an increase in R2 by 0.065 and 0.085 compared with the single data source model, with corresponding decreases in RMSE by 0.147 and 0.189. The validation set showed an R2 of 0.780 and an RMSE of 1.132, indicating a respective increase in R2 by 0.091 and 0.237 and a decrease in RMSE by 0.175 and 0.377 compared with the single data source model. (3) The distribution range of mildly salinized and moderately salinized soil of cultivated land in Pingluo County covered wide areas, accounting for 23.77% and 33.54%, respectively, whereas severely salinized soil constituted 15.37%. This underscores the effectiveness of modeling by combining multisource remote sensing data in improving the prediction accuracy of soil salt content. The outcomes offer a valuable technical reference for predicting soil salt content in arid areas and contribute to the sustainable development of local agriculture.

Key words: optical and microwave remote sensing, machine learning, cultivated land, inversion of soil salt content