干旱区地理 ›› 2023, Vol. 46 ›› Issue (11): 1826-1835.doi: 10.12118/j.issn.1000-6060.2023.083 cstr: 32274.14.ALG2023083
收稿日期:
2023-02-25
修回日期:
2023-04-21
出版日期:
2023-11-25
发布日期:
2023-12-05
作者简介:
王利杰(1997-),男,硕士研究生,主要从事风沙地貌学研究. E-mail: 基金资助:
WANG Lijie(),XIAO Fengjun(
),DONG Zhibao,MA Huirong,CHEN Hao
Received:
2023-02-25
Revised:
2023-04-21
Published:
2023-11-25
Online:
2023-12-05
摘要:
巨型沙波纹条带(Megaripple stripes,MRS)是一种巨型沙波纹在来流方向上呈条带状分布的纵向风成地貌,包括巨型沙波纹尺寸较大的巨型沙波纹走廊(Megaripple corridor,MRC)和尺寸相对较小的微床面形态走廊(Smaller bedform corridor,SBC)。采集柴达木盆地MRS表层沉积物样品共112个,对其物理性质(粒度特征)和化学性质(常量元素和微量元素)进行分析。结果表明:(1) 柴达木盆地MRS表层沉积物中MRC的优势粒级为砾石(44.24%~50.19%)和极细沙(15.91%~20.42%),粒度分布呈双峰型;SBC的优势粒级为极粗沙(26.00%~35.90%)和细沙(14.80%~20.47%),粒度分布呈三峰型。(2) MRS分选很差,偏度以正偏为主,峰态为宽到很宽。(3) MRC和SBC各元素含量差异不大。常量元素以SiO2和Al2O3为主,含量分别在63%和10%左右;微量元素以Cr、Co、Mo和Ba为主。除Cr和Mo外其余元素均为迁移淋失的状态。(4) 柴达木盆地MRS为寒冷干燥环境下的低等化学风化,处于大陆风化初期,化学风化侵蚀相对稳定。
王利杰, 肖锋军, 董治宝, 马慧榕, 陈颢. 柴达木盆地巨型沙波纹条带表层沉积物粒度和地球化学元素组成特征[J]. 干旱区地理, 2023, 46(11): 1826-1835.
WANG Lijie, XIAO Fengjun, DONG Zhibao, MA Huirong, CHEN Hao. Characteristics of grain size and geochemical elements composition of surface sediments of megaripple stripes in the Qaidam Basin[J]. Arid Land Geography, 2023, 46(11): 1826-1835.
表1
MRS表层沉积物粒级级配"
粒级 | 粒径/mm | 沙粒级配/% | ||||||
---|---|---|---|---|---|---|---|---|
MRC1 | SBC1 | MRC2 | SBC2 | MRC3 | SBC3 | MRC4 | ||
砾石 | >2 | 48.51 | 13.13 | 46.95 | 12.59 | 50.19 | 14.12 | 44.24 |
极粗沙 | 1~2 | 11.03 | 28.03 | 13.01 | 26.00 | 10.45 | 35.90 | 7.44 |
粗沙 | 0.5~1 | 1.02 | 9.20 | 1.19 | 8.22 | 1.26 | 12.41 | 0.83 |
中沙 | 0.25~0.5 | 2.22 | 4.51 | 2.19 | 5.33 | 2.23 | 3.76 | 1.89 |
细沙 | 0.125~0.25 | 12.00 | 20.05 | 11.97 | 20.47 | 11.62 | 14.80 | 14.16 |
极细沙 | 0.0625~0.125 | 16.57 | 19.65 | 16.04 | 19.70 | 15.91 | 14.21 | 20.42 |
粉沙黏土 | <0.0625 | 8.65 | 5.43 | 8.65 | 7.68 | 8.33 | 4.80 | 11.02 |
表2
MRS表层沉积物常量元素含量"
元素 | MRS | 变化范围 | 平均值 | 标准差 | 变异系数 | 背景值[ |
---|---|---|---|---|---|---|
SiO2 | MRC | 61.22~64.09 | 62.56 | 1.09 | 0.02 | 66.00 |
SBC | 62.43~65.83 | 64.32 | 1.06 | 0.02 | ||
Al2O3 | MRC | 9.09~10.39 | 9.82 | 0.48 | 0.05 | 15.20 |
SBC | 9.59~10.03 | 9.81 | 0.14 | 0.01 | ||
Na2O | MRC | 2.99~3.76 | 3.39 | 0.33 | 0.10 | 3.90 |
SBC | 3.44~3.86 | 3.60 | 0.14 | 0.04 | ||
CaO | MRC | 3.17~4.63 | 3.96 | 0.56 | 0.14 | 4.20 |
SBC | 3.19~4.85 | 4.05 | 0.54 | 0.13 | ||
Fe2O3 | MRC | 1.70~2.24 | 1.97 | 0.19 | 0.10 | 5.00 |
SBC | 1.82~2.04 | 1.92 | 0.10 | 0.05 | ||
K2O | MRC | 1.70~1.79 | 1.76 | 0.03 | 0.02 | 3.40 |
SBC | 1.56~1.74 | 1.68 | 0.06 | 0.03 | ||
MgO | MRC | 0.61~1.12 | 0.87 | 0.20 | 0.23 | 2.22 |
SBC | 0.54~0.98 | 0.77 | 0.14 | 0.18 | ||
TiO2 | MRC | 0.12~0.17 | 0.14 | 0.02 | 0.15 | 0.50 |
SBC | 0.10~0.12 | 0.11 | 0.01 | 0.08 | ||
MnO | MRC | 0.02~0.03 | 0.03 | 0.00 | 0.11 | 0.06 |
SBC | 0.02~0.03 | 0.03 | 0.00 | 0.13 | ||
P2O5 | MRC | - | 0.02 | 0.00 | 0.12 | 0.55 |
SBC | - | 0.02 | 0.00 | 0.06 |
[1] | Tsoar H. Bagnold R A 1941: The physics of blown sand and desert dunes. London: Methuen[J]. Progress in Physical Geography, 1994, 18(1): 91-96. |
[2] |
Yizhaq H, Katra I, Isenberg O, et al. Evolution of megaripples from a flat bed[J]. Aeolian Research, 2012, 6: 1-12.
doi: 10.1016/j.aeolia.2012.05.001 |
[3] |
李猛, 董治宝, 张正偲. 风成沙波纹数学模型综述[J]. 中国沙漠, 2013, 33(5): 1285-1292.
doi: 10.7522/j.issn.1000-694X.2013.00190 |
[ Li Meng, Dong Zhibao, Zhang Zhengcai. Overview on mathematical models of aeolian sand ripples[J]. Journal of Desert Research, 2013, 33(5): 1285-1292. ]
doi: 10.7522/j.issn.1000-694X.2013.00190 |
|
[4] | 梅凡民, 高自文, 蒋缠文. 风沙流中蠕移粒子群动量分布特征的风洞实验研究[J]. 西北大学学报(自然科学版), 2013, 43(3): 473-479. |
[ Mei Fanmin, Gao Ziwen, Jiang Chanwen. The stochastic distribution of rolling particles’ momentum during aeolian sand transports based on digital high-speed photography images taken in a blown sand wind tunnel[J]. Journal of Northwest University (Natural Science Edition), 2013, 43(3): 473-479. ] | |
[5] | Han Q J, Qu J J, Zu R P, et al. Granule ripples in the Kumtagh Desert, China: Morphological and sedimentary characteristics, and development processes[J]. Journal of Geophysical Research: Earth Surface, 2022, 127(5): e2021JF006448, doi: 10.1029/2021JF006448. |
[6] | Gough T R. Megaripple Stripes[D]. Calgary: University of Calgary, 2019. |
[7] | Simons F S, Ericksen G E. Some desert features of northwest central Peru[J]. Boletin de la Sociedad Geológica del Perú, 1953, 26: 229-246. |
[8] | Newell N D, Boyd D W. Extraordinarily coarse eolian sand of the Ica Desert, Peru[J]. Journal of Sedimentary Research, 1955, 25: 226-228. |
[9] | Haney E M, Grolier M J. Geologic map of major Quaternary eolian features, northern and central coastal Peru[R]. Virginia: United States Geological Survey, 1991. |
[10] |
Durán O, Claudin P, Andreotti B. On aeolian transport: Grain-scale interactions, dynamical mechanisms and scaling laws[J]. Aeolian Research, 2011, 3(3): 243-270.
doi: 10.1016/j.aeolia.2011.07.006 |
[11] |
Silvestro S, Vaz D, Di Achille G, et al. Evidence for different episodes of aeolian construction and a new type of wind streak in the 2016 ExoMars landing ellipse in Meridiani Planum, Mars[J]. Journal of Geophysical Research: Planets, 2015, 120(4): 760-774.
doi: 10.1002/jgre.v120.4 |
[12] |
罗万银, 董治宝, 钱广强, 等. 戈壁表层沉积物地球化学元素组成及其沉积意义[J]. 中国沙漠, 2014, 34(6): 1441-1453.
doi: 10.7522/j.issn.1000-694X.2014.00110 |
[ Luo Wanyin, Dong Zhibao, Qian Guangqiang, et al. Geochemical compositions of surface sediment from gobi desert in northern China and its sedimentary significance[J]. Journal of Desert Research, 2014, 34(6): 1441-1453. ]
doi: 10.7522/j.issn.1000-694X.2014.00110 |
|
[13] |
潘凯佳, 张正偲, 董治宝, 等. 河西走廊新月形沙丘表层沉积物的理化性质[J]. 中国沙漠, 2019, 39(1): 44-51.
doi: 10.7522/j.issn.1000-694X.2018.00150 |
[ Pan Kaijia, Zhang Zhengcai, Dong Zhibao, et al. Physicochemical characteristics of surface sediments of crescent-shaped sand dunes in the Hexi Corridor, Gansu, China[J]. Journal of Desert Research, 2019, 39(1): 44-51. ]
doi: 10.7522/j.issn.1000-694X.2018.00150 |
|
[14] | Liang A M, Dong Z B, Su Z Z, et al. Provenance and transport process for interdune sands in the Kumtagh Sand Sea, northwest China[J]. Geomorphology, 2020, 367: 107310, doi: 10.1016/j.geomorph.2020.107310. |
[15] | Zhang Z C, Pan K J, Zhang C X, et al. Geochemical characteristics and the provenance of aeolian material in the Hexi Corridor Desert, China[J]. Catena, 2020, 190: 104483, doi: 10.1016/j.catena.2020.104483. |
[16] | 陈国祥. 毛乌素沙地风成沉积物沉积学特征[D]. 西安: 陕西师范大学, 2019. |
[ Chen Guoxiang. Sedimentological characteristics of aeolian sediments in Mu Us Sandy Land[D]. Xi’an: Shaanxi Normal University, 2019. ] | |
[17] |
张焱, 马鹏飞, 曾林, 等. 基于沉积物理化性质的雅鲁藏布江中游粉尘物源研究[J]. 中国沙漠, 2021, 41(3): 92-100.
doi: 10.7522/j.issn.1000-694X.2021.00024 |
[ Zhang Yan, Ma Pengfei, Zeng Lin, et al. Study on silt and clay provenance in the Yarlung Zangbo River middle reaches using sediment physicochemical characteristics[J]. Journal of Desert Research, 2021, 41(3): 92-100. ]
doi: 10.7522/j.issn.1000-694X.2021.00024 |
|
[18] | 邵菁清, 杨守业. 化学蚀变指数(CIA)反映长江流域的硅酸盐岩化学风化与季风气候?[J]. 科学通报, 2012, 57(11): 933-942. |
[ Shao Jingqing, Yang Shouye. Does chemical index of alteration (CIA) reflect silicate weathering and monsoonal climate in the Changjiang River Basin?[J]. Chinese Science Bulletin, 2012, 57(11): 933-942. ] | |
[19] |
Ando S, Rittner M, Vermeesch P, et al. The provenance of Taklamakan Desert sand[J]. Earth and Planetary Science Letters, 2016, 437: 127-137.
doi: 10.1016/j.epsl.2015.12.036 |
[20] |
Hu F G, Yang X P. Geochemical and geomorphological evidence for the provenance of aeolian deposits in the Badain Jaran Desert, northwestern China[J]. Quaternary Science Reviews, 2016, 131: 179-192.
doi: 10.1016/j.quascirev.2015.10.039 |
[21] | 徐志伟, 鹿化煜, 赵存法, 等. 库姆塔格沙漠地表物质组成、来源和风化过程[J]. 地理学报, 2010, 65(1): 53-64. |
[ Xu Zhiwei, Lu Huayu, Zhao Cunfa, et al. Composition, origin and weathering process of surface sediment in Kumtagh Desert, northwest China[J]. Acta Geographica Sinica, 2010, 65(1): 53-64. ] | |
[22] | 董治宝, 苏志珠, 钱广强, 等. 库姆塔格沙漠风沙地貌[M]. 北京: 科学出版社, 2011. |
[ Dong Zhibao, Su Zhizhu, Qian Guangqiang, et al. Aeolian geomorphology of the Kumtagh Desert[M]. Beijing: Science Press, 2011. ] | |
[23] | 李恩菊. 巴丹吉林沙漠与腾格里沙漠沉积物特征的对比研究[D]. 西安: 陕西师范大学, 2011. |
[ Li Enjü. Comparative study on sediment characteristics of Badain Jaran Desert and Tengger Desert[D]. Xi’ an: Shaanxi Normal University, 2011. ] | |
[24] | 伍光和, 胡双熙, 张志良, 等. 柴达木盆地[M]. 兰州: 兰州大学出版社, 1990. |
[ Wu Guanghe, Hu Shuangxi, Zhang Zhiliang, et al. Qaidam Basin[M]. Lanzhou: Lanzhou University Press, 1990. ] | |
[25] |
梁爱民, 董治宝, 张正偲, 等. 沙漠倒置河床研究进展及其对火星类似物研究的启示[J]. 中国沙漠, 2022, 42(5): 14-24.
doi: 10.7522/j.issn.1000-694X.2022.00004 |
[ Liang Aimin, Dong Zhibao, Zhang Zhengcai, et al. Study on the desert inverted channels and its implication for the study of the analogue on Mars[J]. Journal of Desert Research, 2022, 42(5): 14-24. ]
doi: 10.7522/j.issn.1000-694X.2022.00004 |
|
[26] | 格尔木市地方志编纂委员会. 格尔木年鉴(2020)[M]. 西安: 陕西科学技术出版社, 2020. |
[ Golmud Local Chronicles Compilation Committee. Golmud Almanac (2020)[M]. Xi’ an: Shaanxi Science and Technology Press, 2020. ] | |
[27] |
陈宗颜, 董治宝, 汪青春, 等. 柴达木盆地风况及输沙势特征[J]. 中国沙漠, 2020, 40(1): 195-203.
doi: 10.7522/j.issn.1000-694X.2019.00090 |
[ Chen Zongyan, Dong Zhibao, Wang Qingchun, et al. Characteristics of wind regime and sand drift potential in Qaidam Basin of China[J]. Journal of Desert Research, 2020, 40(1): 195-203. ]
doi: 10.7522/j.issn.1000-694X.2019.00090 |
|
[28] |
Folk R L, Ward W C. Brazos river bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1): 3-26.
doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D |
[29] |
Udden J A. Mechanical composition of clastic sediments[J]. Bulletin of the Geological Society of America, 1914, 25(1): 655-744.
doi: 10.1130/GSAB-25-655 |
[30] |
Wentworth C K. A scale of grade and class terms for clastic sediments[J]. The Journal of Geology, 1922, 30(5): 377-392.
doi: 10.1086/622910 |
[31] | Visher G S. Grain size distributions and depositional processes[J]. Journal of Sedimentary Research, 1969, 39(3): 1074-1106. |
[32] |
陈渭南. 塔克拉玛干沙漠84°E沿线沙物质的粒度特征[J]. 地理学报, 1993, 48(1): 33-46.
doi: 10.11821/xb199301005 |
[ Chen Weinan. Grain size parameters of aeolian sediments in the vicinity of the longitude 84°E, Taklamakan Desert[J]. Acta Geographica Sinica, 1993, 48(1): 33-46. ]
doi: 10.11821/xb199301005 |
|
[33] |
王晓枝, 董治宝, 南维鸽, 等. 拉萨河谷爬坡沙丘沉积物特征[J]. 中国沙漠, 2022, 42(4): 22-31.
doi: 10.7522/j.issn.1000-694X.2021.00174 |
[ Wang Xiaozhi, Dong Zhibao, Nan Weige, et al. Sediment characteristics of climbing dunes in Lhasa River Valley, China[J]. Journal of Desert Research, 2022, 42(4): 22-31. ]
doi: 10.7522/j.issn.1000-694X.2021.00174 |
|
[34] |
Qian G Q, Dong Z B, Zhang Z C, et al. Granule ripples in the Kumtagh Desert, China: Morphology, grain size and influencing factors[J]. Sedimentology, 2012, 59(6): 1888-1901.
doi: 10.1111/sed.2012.59.issue-6 |
[35] | Taylor S R, Mclennan S M. The continental crust: Its composition and evolution[M]. Palo: Blackwell Scientific Publications, 1985. |
[36] | 李绪龙, 张霞, 林春明, 等. 常用化学风化指标综述: 应用与展望[J]. 高校地质学报, 2022, 28(1): 51-63. |
[ Li Xulong, Zhang Xia, Lin Chunming, et al. Overview of the application and prospect of common chemical weathering indices[J]. Geological Journal of China Universities, 2022, 28(1): 51-63. ] | |
[37] | 陈骏, 安芷生, 刘连文, 等. 最近2.5 Ma以来黄土高原风尘化学组成的变化与亚洲内陆的化学风化[J]. 中国科学: 地球科学, 2001(2): 136-145. |
[ Chen Jun, An Zhisheng, Liu Lianwen, et al. Changes in chemical composition of aeolian dust in the Loess Plateau and chemical weathering in inland Asia since the last 2.5 Ma[J]. Scientia Sinica (Terrae), 2001(2): 136-145. ] | |
[38] |
Tholen K, Pahtz T, Yizhaq H, et al. Megaripple mechanics: Bimodal transport ingrained in bimodal sands[J]. Nature Communications, 2022, 13(1): 162, doi: 10.1038/s41467-021-26985-3.
pmid: 35013166 |
[39] |
Gough T, Hugenholtz C, Barchyn T. Eolian megaripple stripes[J]. Geology, 2020, 48(11): 1067-1071.
doi: 10.1130/G47460.1 |
[40] |
Yizhaq H, Isenberg O, Wenkart R, et al. Morphology and dynamics of aeolian mega-ripples in Nahal Kasuy, southern Israel[J]. Israel Journal of Earth Sciences, 2009, 57(3): 149-165.
doi: 10.1560/IJES.57.3-4.149 |
[41] |
Isenberg O, Yizhaq H, Tsoar H, et al. Megaripple flattening due to strong winds[J]. Geomorphology, 2011, 131(3-4): 69-84.
doi: 10.1016/j.geomorph.2011.04.028 |
[42] | 韩广, 龙鲜, 丁占良, 等. 科尔沁沙地大型沙波纹的初步研究[J]. 干旱区地理, 2023, 46(1): 56-64. |
[ Han Guang, Long Xian, Ding Zhanliang, et al. Preliminary study on the large-scale ripples in the Korqin Sandy Land[J]. Arid Land Geography, 2023, 46(1): 56-64. ] | |
[43] |
Yizhaq H, Katra I, Kok J F, et al. Transverse instability of megaripples[J]. Geology, 2012, 40(5): 459-462.
doi: 10.1130/G32995.1 |
[1] | 李全聪, 雷国良, 赵晖, 朱芸, 孙婉婷, 于源, 江戈平. 巴丹吉林沙漠腹地盐湖碳酸盐同位素特征及其环境意义[J]. 干旱区地理, 2025, 48(2): 247-256. |
[2] | 龚逸夫, 潘美慧, 李娜, 郝泽文, 陈有桂, 李晨露. 西藏定结地区不同类型沙丘表层沉积物粒度特征及其环境意义[J]. 干旱区地理, 2024, 47(4): 588-598. |
[3] | 廖婉约, 介冬梅, 高桂在, 王江永. 中晚全新世科尔沁沙地气候变化及沙地演化研究[J]. 干旱区地理, 2024, 47(11): 1876-1886. |
[4] | 闫敏, 陈宇鑫, 左合君, 王海兵, 席成. 库布齐沙漠边缘不同下垫面风沙流物质再分配及对营养元素的富集作用[J]. 干旱区地理, 2023, 46(6): 889-899. |
[5] | 陈京平, 余子莹, 杨帆, 王蜜, 胡涵, 丁璇, 高鑫, 王鑫. 塔克拉玛干沙漠腹地沙尘暴对新月形沙丘表面粒度变化的影响[J]. 干旱区地理, 2023, 46(12): 1995-2004. |
[6] | 韩广, 龙鲜, 丁占良, 冯净雪. 科尔沁沙地大型沙波纹的初步研究[J]. 干旱区地理, 2023, 46(1): 56-64. |
[7] | 闫敏,左合君,贾光普,席成. 不同防沙措施的风沙流及其携沙粒度垂直分异特征[J]. 干旱区地理, 2022, 45(5): 1513-1522. |
[8] | 沙国良,魏天兴,陈宇轩,傅彦超,任康. 黄土高原丘陵区典型植物群落土壤粒径分布特征[J]. 干旱区地理, 2022, 45(4): 1224-1234. |
[9] | 鲍晶,叶程程,栗兵帅. 粘土矿物的提取、鉴定及其古气候意义——以柴达木盆地怀头他拉剖面为例[J]. 干旱区地理, 2022, 45(3): 814-825. |
[10] | 梁晓磊,翟晓慧,牛清河,胡子豪,王天虎,刘万成. 敦煌雅丹地层沉积物粒度特征初步研究[J]. 干旱区地理, 2022, 45(1): 141-152. |
[11] | 娄泊远,王永东,周娜,闫晋升,艾柯代·艾斯凯尔. 努尔苏丹樟子松人工林土壤粒度组成特征研究[J]. 干旱区地理, 2022, 45(1): 219-225. |
[12] | 王佩,马倩,朱元璞,曾燚. 新疆图开沙漠灌丛沙堆和抛物线形沙丘表层沉积物粒度特征及其沉积环境[J]. 干旱区地理, 2021, 44(6): 1644-1653. |
[13] | 贺振杰,马龙,吉力力·阿不都外力,刘文,Gulnura ISSANOVA,Galymzhan SAPAROV,黄坤. 哈萨克斯坦巴尔喀什湖沉积物粒度特征及其对区域环境变化的响应[J]. 干旱区地理, 2021, 44(5): 1317-1327. |
[14] | 刘蓉,岳大鹏,赵景波,苏志珠,石浩,王晓宁. 陕西横山L2以来风沙/黄土沉积序列的粒度端元特征及其环境意义[J]. 干旱区地理, 2021, 44(5): 1328-1338. |
[15] | 潘佩翀,时洋,赵智丰,王佳,曹炯玮,柏文文,解宏伟,魏加华. 干旱内陆区声波干预下降雨微物理特征研究[J]. 干旱区地理, 2021, 44(4): 906-913. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 61
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 150
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|