干旱区地理 ›› 2025, Vol. 48 ›› Issue (2): 247-256.doi: 10.12118/j.issn.1000-6060.2024.288 cstr: 32274.14.ALG2024288
李全聪1,2(), 雷国良1,2,3(
), 赵晖4, 朱芸1,2,3, 孙婉婷1,2, 于源1,2, 江戈平1,2
收稿日期:
2024-05-09
修回日期:
2024-10-12
出版日期:
2025-02-25
发布日期:
2025-02-25
通讯作者:
雷国良(1981-),男,博士,副研究员,主要从事地貌过程与环境演变、环境地球化学研究. E-mail: leiguoliang@fjnu.edu.cn作者简介:
李全聪(1998-),男,硕士研究生,主要从事全球变化与第四纪研究. E-mail: qsx20221051@student.fjnu.edu.cn
基金资助:
LI Quancong1,2(), LEI Guoliang1,2,3(
), ZHAO Hui4, ZHU Yun1,2,3, SUN Wanting1,2, YU Yuan1,2, JIANG Geping1,2
Received:
2024-05-09
Revised:
2024-10-12
Published:
2025-02-25
Online:
2025-02-25
摘要:
湖泊碳酸盐的形成与湖水物理化学性质以及气候环境密切相关,是记录湖泊环境信息的重要载体。以巴丹吉林沙漠腹地6个湖泊中2种类型的碳酸盐(钙华、湖泊沉积物碳酸盐)为研究对象,基于稳定碳、氧以及团簇同位素(Δ47)指标,对比分析了2种碳酸盐的沉淀过程及其所揭示的环境信息。研究表明:(1) 巴丹吉林沙漠6个湖泊中钙华与沉积物2种碳酸盐的碳、氧同位素特征显著不同,钙华沉积的氧同位素显著较湖泊沉积物碳酸盐偏负。(2) 湖泊沉积物碳酸盐的团簇同位素温度[T(Δ47)]与区域夏季温度接近;而钙华碳酸盐的T(Δ47)低于湖泊沉积物碳酸盐。(3) 基于氧同位素和T(Δ47)估算的碳酸盐沉淀水体δ18O显示,形成钙华碳酸盐的水体δ18O记录了泉水与湖水混合的信号。研究结果初步揭示了巴丹吉林沙漠腹地盐湖碳酸盐的环境指示意义,为长时间尺度上揭示沙漠湖泊的水文演化提供了数据支撑。
李全聪, 雷国良, 赵晖, 朱芸, 孙婉婷, 于源, 江戈平. 巴丹吉林沙漠腹地盐湖碳酸盐同位素特征及其环境意义[J]. 干旱区地理, 2025, 48(2): 247-256.
LI Quancong, LEI Guoliang, ZHAO Hui, ZHU Yun, SUN Wanting, YU Yuan, JIANG Geping. Isotopic characteristics of carbonate in salt lakes in the hinterland of Badain Jaran Desert and its environmental significance[J]. Arid Land Geography, 2025, 48(2): 247-256.
表1
研究区湖泊基本信息"
湖泊名称 | 经度/°E | 纬度/°N | 面积/km2 | 湖水pH值 | 地下水pH值 | 湖泊最大深度/m | 水化学类型 |
---|---|---|---|---|---|---|---|
呼都格吉林 | 102.37[ | 39.82[ | 0.43[ | 9.63 | 7.11[ | 6.30[ | Na-CO3-Cl[ |
呼和吉林 | 102.46[ | 39.88[ | 0.93[ | 9.50 | 7.68[ | 12.20[ | Na-CO3-Cl[ |
必鲁图 | 102.49[ | 39.84[ | 0.33[ | 9.48 | - | - | Na-CO3-Cl[ |
布尔特 | 102.27[ | 39.84[ | 0.24[ | 9.61 | 9.19[ | - | Na-CO3-Cl[ |
苏木吉林 | 102.43[ | 39.81[ | 0.62[ | 9.57 | 7.80[ | 5.80[ | Na-CO3-Cl[ |
车日格勒 | 102.25[ | 39.89[ | 1.06[ | 9.52 | 7.93[ | 8.00[ | Na-CO3-Cl[ |
表2
钙华与湖泊沉积物碳酸盐同位素测试结果"
碳酸盐类型 | 湖泊名称 | 样品编号 | 测试加样量/mg | δ13C/‰ | δ18O/‰ | Δ47/‰ | Δ47±1SE/‰ | T(Δ47)/℃ | T(Δ47)±1SE/℃ | N |
---|---|---|---|---|---|---|---|---|---|---|
钙华 | 呼都格吉林 | HDGJL-T | 15 | -7.81 | -3.68 | 0.726 | 0.007 | 17.5 | 1.9 | 3 |
呼和吉林 | HHJL-T | 15 | -2.71 | -1.53 | 0.725 | 0.002 | 17.7 | 0.6 | 3 | |
必鲁图 | BLT-T | 20 | -1.54 | -0.91 | 0.713 | 0.012 | 21.2 | 3.3 | 3 | |
布尔特 | BET-T | 15 | 0.45 | -1.21 | 0.713 | 0.010 | 21.2 | 2.9 | 8 | |
苏木吉林 | SMJL-T | 20 | -0.15 | -0.45 | 0.714 | 0.011 | 20.8 | 3.1 | 7 | |
车日格勒 | CRGL-T | 12 | 1.68 | -0.86 | 0.710 | 0.005 | 22.0 | 1.5 | 3 | |
湖泊沉积 物碳酸盐 | 呼都格吉林 | HDGJL-S | 77 | -2.24 | -1.42 | 0.672 | 0.005 | 33.9 | 1.6 | 4 |
呼和吉林 | HHJL-S | 80 | -0.38 | -0.64 | 0.688 | 0.006 | 28.7 | 1.9 | 3 | |
必鲁图 | BLT-S | 65 | -0.75 | -0.18 | 0.686 | 0.023 | 29.3 | 7.0 | 3 | |
布尔特 | BET-S | 70 | 0.57 | -0.16 | 0.697 | 0.015 | 25.9 | 4.5 | 4 | |
苏木吉林 | SMJL-S | 70 | -1.41 | 0.47 | 0.697 | 0.007 | 25.8 | 2.2 | 3 | |
车日格勒 | CRGL-S | 95 | -0.70 | -0.65 | 0.704 | 0.005 | 23.8 | 1.5 | 4 |
[1] | 朱金峰, 王乃昂, 陈红宝, 等. 基于遥感的巴丹吉林沙漠范围与面积分析[J]. 地理科学进展, 2010, 29(9): 1087-1094. |
[Zhu Jinfeng, Wang Nai’ang, Chen Hongbao, et al. Study on the boundary and the area of Badain Jaran Desert based on remote sensing imagery[J]. Progress in Geography, 2010, 29(9): 1087-1094. ]
doi: 10.11820/dlkxjz.2010.09.010 |
|
[2] |
张新毅, 范小露, 田明中. 巴丹吉林沙漠晚更新世沉积物矿物学特征及其指示意义[J]. 干旱区地理, 2022, 45(6): 1773-1783.
doi: 10.12118/j.issn.1000-6060.2022.051 |
[Zhang Xinyi, Fan Xiaolu, Tian Mingzhong. Mineralogical characteristics and its significance of late Pleistocene sediments in the Badain Jaran Desert[J]. Arid Land Geography, 2022, 45(6): 1773-1783. ]
doi: 10.12118/j.issn.1000-6060.2022.051 |
|
[3] |
Gong Y, Wang X, Hu B X, et al. Groundwater contributions in water-salt balances of the lakes in the Badain Jaran Desert, China[J]. Journal of Arid Land, 2016, 8(5): 694-706.
doi: 10.1007/s40333-016-0086-8 |
[4] | Leng M J, Marshall J D. Palaeoclimate interpretation of stable isotope data from lake sediment archives[J]. Quaternary Science Reviews, 2004, 23(7-8): 811-831. |
[5] |
项超生, 汪勇, 王君波, 等. 高海拔干旱区湖泊沉积物多指标记录的环境变化研究——以阿克赛钦湖为例[J]. 干旱区地理, 2022, 45(2): 435-444.
doi: 10.12118/j.issn.1000–6060.2021.295 |
[Xiang Chaosheng, Wang Yong, Wang Junbo, et al. Environmental changes recorded by multiproxy of lake sediments in the high-altitude and arid area: A case of Lake Aksayqin[J]. Arid Land Geography, 2022, 45(2): 435-444. ]
doi: 10.12118/j.issn.1000–6060.2021.295 |
|
[6] | Urey H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society, 1947: 562-581. |
[7] | Kim S T, O’Neil J R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates[J]. Geochimica et Cosmochimica Acta, 1997, 61(16): 3461-3475. |
[8] | Ghosh P, Adkins J, Affek H, et al. 13C-18O bonds in carbonate minerals: A new kind of paleothermometer[J]. Geochimica et Cosmochimica Acta, 2006, 70: 1439-1456. |
[9] | Eiler J M. “Clumped-isotope” geochemistry: The study of naturally-occurring, multiply-substituted isotopologues[J]. Earth and Planetary Science Letters, 2007, 262(3-4): 309-327. |
[10] | Guo Y, Deng W, Wei G. Kinetic effects during the experimental transition of aragonite to calcite in aqueous solution: Insights from clumped and oxygen isotope signatures[J]. Geochimica et Cosmochimica Acta, 2019, 248: 210-230. |
[11] | 马素辉, 李卓仑, 王乃昂, 等. 地下水补给型湖泊表层沉积物矿物组成及其形成机制——以巴丹吉林沙漠湖泊群为例[J]. 湖泊科学, 2015, 27(4): 727-734. |
[Ma Suhui, Li Zhuolun, Wang Nai’ang, et al. Mineralogical assemblages in surface sediments and its formation mechanism in the groundwater recharged lakes: A case study of lakes in the Badain Jaran Desert[J]. Journal of Lake Science, 2015, 27(4): 727-734. ] | |
[12] | 姜高磊, 王乃昂, 李卓仑, 等. 巴丹吉林沙漠湖泊表层沉积物盐类矿物分布及对气候环境的指示[J]. 中国地质, 2022, 51(6): 2077-2089. |
[Jiang Gaolei, Wang Nai’ang, Li Zhuolun, et al. Distribution pattern of saline minerals in surface sediments from lakes in the Badain Jaran Desert and its implications for climate-environmental reconstruction[J]. Geology in China, 2022, 51(6): 2077-2089. ] | |
[13] |
赵晖, 杨宏宇, 王兴繁, 等. 巴丹吉林沙漠典型沉积物年代学研究评述[J]. 中国沙漠, 2022, 42(1): 57-65.
doi: 10.7522/j.issn.1000-694X.2021.00196 |
[Zhao Hui, Yang Hongyu, Wang Xingfan, et al. Geochronology of the typical sediments in the Badain Jaran Desert: The progress and issues[J]. Journal of Desert Research, 2022, 42(1): 57-65. ]
doi: 10.7522/j.issn.1000-694X.2021.00196 |
|
[14] | Andrews J E, Pedley M, Dennis P F. Palaeoenvironmental records in Holocene Spanish tufas: A stable isotope approach in search of reliable climatic archives[J]. Sedimentology, 2000, 47(5): 961-978. |
[15] | Rosen M R, Arehart G B, Lico M S. Exceptionally fast growth rate of <100-yr-old tufa, Big Soda Lake, Nevada: Implications for using tufa as a paleoclimate proxy[J]. Geology, 2004, 32(5): 409-412. |
[16] | Hudson A M, Quade J, Ali G, et al. Stable C, O and clumped isotope systematics and 14C geochronology of carbonates from the Quaternary Chewaucan closed-basin lake system, Great Basin, USA: Implications for paleoenvironmental reconstructions using carbonates[J]. Geochimica et Cosmochimica Acta, 2017, 212: 274-302. |
[17] |
宁凯, 王乃昂, 李卓仑, 等. 基于CMB模型的巴丹吉林沙漠沙源区分析[J]. 干旱区地理, 2021, 44(2): 389-399.
doi: 10.12118/j.issn.1000–6060.2021.02.10 |
[Ning Kai, Wang Nai’ang, Li Zhuolun, et al. Analysis of sand source for Badain Jaran Desert based on CMB model[J]. Arid Land Geography, 2021, 44(2): 389-399. ]
doi: 10.12118/j.issn.1000–6060.2021.02.10 |
|
[18] | Yang X, Ma N, Dong J, et al. Recharge to the inter-dune lakes and Holocene climatic changes in the Badain Jaran Desert, western China[J]. Quaternary Research, 2010, 73(1): 10-19. |
[19] | 王乃昂, 宁凯, 李卓仑, 等. 巴丹吉林沙漠全新世的高湖面与泛湖期[J]. 中国科学: 地球科学, 2016, 46(8): 1106-1115. |
[Wang Nai’ang, Ning Kai, Li Zhuolun, et al. Holocene high lake-levels and pan-lake period on Badain Jaran Desert[J]. Science China Earth Sciences, 2016, 46(8): 1106-1115. ] | |
[20] | 张文佳. 巴丹吉林沙漠腹地湖区蒸散发及水量平衡研究[D]. 兰州: 兰州大学, 2020. |
[Zhang Wenjia. Study on the evapotranspiration and water balance of lake basin in the hinterland of Badain Jaran Desert[D]. Lanzhou: Lanzhou University, 2020. ] | |
[21] | Jiang G, Wang N, Mao X, et al. Hydrological evolution of a lake recharged by groundwater in the Badain Jaran Desert over the past 140 years[J]. Frontiers in Earth Science, 2021, 9: 721724, doi: 10.3389/feart.2021.721724. |
[22] | 曹乐, 聂振龙, 申建梅, 等. 巴丹吉林沙漠湖泊水化学类型与钙华沉积关系[J]. 地球科学, 2023, 48(10): 3844-3855. |
[Cao Le, Nie Zhenlong, Shen Jianmei, et al. Relationship between lakes’ hydrochemical types and tufa deposition in Badain Jaran Desert[J]. Earth Science, 2023, 48(10): 3844-3855. ] | |
[23] | 巩艳萍. 巴丹吉林沙漠地下水对湖泊水均衡及其盐分变化的影响[D]. 北京: 中国地质大学(北京), 2017. |
[Gong Yanping. The impacts of groundwater on lakes in the Badain Jaran Desert relevant to water balance and salts variation[D]. Beijing: China University of Geosciences (Beijing), 2017. ] | |
[24] |
赵力强, 张律吕, 王乃昂, 等. 巴丹吉林沙漠湖泊形态初步研究[J]. 干旱区研究, 2018, 35(5): 1001-1011.
doi: 10.13866/j.azr.2018.05.01 |
[Zhao Liqiang, Zhang Lülü, Wang Nai’ang, et al. Morphology of the lakes in the Badain Jaran Desert[J]. Arid Zone Research, 2018, 35(5): 1001-1011. ]
doi: 10.13866/j.azr.2018.05.01 |
|
[25] | 金可, 张乾柱, 卢阳, 等. 巴丹吉林沙漠湖泊群水体氢氧同位素和水化学特征[J]. 人民长江, 2022, 53(4): 65-72. |
[Jin Ke, Zhang Qianzhu, Lu Yang, et al. Research on stable isotopes and hydrochemical features of lakes water in Badain Jaran Desert[J]. Yangtze River, 2022, 53(4): 65-72. ] | |
[26] | 陈立. 应用地球化学方法探究巴丹吉林沙漠地下水源[D]. 兰州: 兰州大学, 2012. |
[Chen Li. Groundwater recharge source in Badain Jaran Desert: Evidence from geochemistry[D]. Lanzhou: Lanzhou University, 2012. ] | |
[27] | 陆莹, 王乃昂, 李贵鹏, 等. 巴丹吉林沙漠湖泊水化学空间分布特征[J]. 湖泊科学, 2010, 22(5): 774-782. |
[Lu Ying, Wang Nai’ang, Li Guipeng, et al. Spatial distribution of lakes hydro-chemical types in Badain Jaran Desert[J]. Journal of Lake Science, 2010, 22(5): 774-782. ] | |
[28] | Yang X, Williams M A J. The ion chemistry of lakes and late Holocene desiccation in the Badain Jaran Desert, Inner Mongolia, China[J]. Catena, 2003, 51(1): 45-60. |
[29] |
曹乐, 聂振龙, 刘学全, 等. 巴丹吉林沙漠湖泊钙华的水化学成因[J]. 中国沙漠, 2017, 37(5): 1026-1034.
doi: 10.7522/j.issn.1000-694X.2016.00101 |
[Cao Le, Nie Zhenlong, Liu Xuequan, et al. Hydrochemical cause of lakes tufa in Badain Jaran Desert[J]. Journal of Desert Research, 2017, 37(5): 1026-1034. ]
doi: 10.7522/j.issn.1000-694X.2016.00101 |
|
[30] |
Huntington K W, Eiler J M, Affek H P, et al. Methods and limitations of ‘clumped’ CO2 isotope (Δ47) analysis by gas-source isotope ratio mass spectrometry[J]. Journal of Mass Spectrometry, 2009, 44(9): 1318-1329.
doi: 10.1002/jms.1614 pmid: 19621330 |
[31] |
Passey B H, Levin N E, Cerling T E, et al. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25): 11245-11249.
doi: 10.1073/pnas.1001824107 pmid: 20534500 |
[32] | 许雅芯, 朱芸, 许丽红, 等. 样品量差异对团簇同位素Δ47测定的影响[J]. 第四纪研究, 2022, 42(2): 504-511. |
[Xu Yaxin, Zhu Yun, Xu Lihong, et al. Effects of different sample size on the reproducibility of clumped isotope(Δ47) measurements[J]. Quaternary Sciences, 2022, 42(2): 504-511. ] | |
[33] | 杜垚华, 李苗发, 雷国良, 等. 福建仙云洞现代次生碳酸盐团簇同位素特征与温度重建[J]. 第四纪研究, 2023, 43(5): 1343-1353. |
[Du Yaohua, Li Miaofa, Lei Guoliang, et al. Clumped isotope characteristics and temperature reconstruction of carbonate in modern speleothems of Xianyun cave in Fujian[J]. Quaternary Sciences, 2023, 43(5): 1343-1353. ] | |
[34] | John C M, Bowen D. Community software for challenging isotope analysis: First applications of ‘Easotope’ to clumped isotopes[J]. Rapid Communications in Mass Spectrometry, 2016, 30(21): 2285-2300. |
[35] | Dennis K J, Affek H P, Passey B H, et al. Defining an absolute reference frame for ‘clumped’ isotope studies of CO2[J]. Geochimica et Cosmochimica Acta, 2011, 75(22): 7117-7131. |
[36] | Zhang J, Quay P D, Wilbur D O. Carbon isotope fractionation during gas-water exchange and dissolution of CO2[J]. Geochimica et Cosmochimica Acta, 1995, 59(1): 107-114. |
[37] | Zeebe R E. An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes[J]. Geochimica et Cosmochimica Acta, 1999, 63(13-14): 2001-2007. |
[38] | Affek H P, Zaarur S. Kinetic isotope effect in CO2 degassing: Insight from clumped and oxygen isotopes in laboratory precipitation experiments[J]. Geochimica et Cosmochimica Acta, 2014, 143: 319-330. |
[39] | Yan H, Liu Z, Sun H. Effect of in-stream physicochemical processes on the seasonal variations in δ13C and δ18O values in laminated travertine deposits in a mountain stream channel[J]. Geochimica et Cosmochimica Acta, 2017, 202: 179-189. |
[40] | Benson L. Carbonate deposition, Pyramid Lake subbasin, Nevada: 1. Sequence of formation and elevational distribution of carbonate deposits (tufas)[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1994, 109(1): 55-87. |
[41] | Benson L, Peterman Z. Carbonate deposition, Pyramid Lake subbasin, Nevada: 3. The use of 87Sr values in carbonate deposits (tufas) to determine the hydrologic state of paleolake systems[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1996, 119(3-4): 201-213. |
[42] | Smith G I. Late Cenozoic geology and lacustrine history of Searles Valley, Inyo and San Bernardino Counties, California[J]. American Geophysical Union, 2009(1727): 1-115. |
[43] | Huntington K W, Petersen S V. Frontiers of carbonate clumped isotope thermometry[J]. Annual Review of Earth and Planetary Sciences, 2023, 51(1): 611-641. |
[44] |
Jautzy J J, Savard M M, Dhillon R S, et al. Clumped isotope temperature calibration for calcite: Bridging theory and experimentation[J]. Geochemical Perspectives Letters, 2020, 14: 36-41.
doi: 10.7185/geochemlet.2021 |
[45] | Piasecki A, Bernasconi S M, Grauel A L, et al. Application of clumped isotope thermometry to benthic foraminifera[J]. Geochemistry Geophysics Geosystems, 2019, 20(4): 2082-2090. |
[46] | Anderson N T, Kelson J R, Kele S, et al. A unified clumped isotope thermometer calibration (0.5-1100 ℃) using carbonate-based standardization[J]. Geophysical Research Letters, 2021, 48(7): 11, doi: 10.1029/2020GL092069. |
[47] | Kele S, Breitenbach S F M, Capezzuoli E, et al. Temperature dependence of oxygen-and clumped isotope fractionation in carbonates: A study of travertines and tufas in the 6-95 ℃ temperature range[J]. Geochimica et Cosmochimica Acta, 2015, 168: 172-192. |
[48] | Tripati A K, Hill P S, Eagle R A, et al. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition[J]. Geochimica et Cosmochimica Acta, 2015, 166: 344-371. |
[49] | Watkins J M, Hunt J D. A process-based model for non-equilibrium clumped isotope effects in carbonates[J]. Earth and Planetary Science Letters, 2015, 432: 152-165. |
[50] | Yang P, Wang N, Zhao L, et al. Variation characteristics and influencing mechanism of CO2 flux from lakes in the Badain Jaran Desert: A case study of Yindeer Lake[J]. Ecological Indicators, 2021, 127, doi: 10.1016/j.ecolind.2021.107731. |
[51] | 欧阳波罗. 巴丹吉林沙漠湖水和地下水氢氧同位素研究[D]. 北京: 中国地质大学(北京), 2014. |
[Ouyang Boluo. Characteristics of H-O isotopes in lake-water and groundwater in Badain Jaran Desert[D]. Beijing: China University of Geosciences (Beijing), 2014. ] | |
[52] | Banda J F, Zhang Q, Ma L, et al. Both pH and salinity shape the microbial communities of the lakes in Badain Jaran Desert, NW China[J]. Science of the Total Environment, 2021, 791: 148108, doi: 10.1016/j.scitotenv.2021.148108. |
[53] | Uchikawa J, Zeebe R E. The effect of carbonic anhydrase on the kinetics and equilibrium of the oxygen isotope exchange in the CO2-H2O system: Implications for δ18O vital effects in biogenic carbonates[J]. Geochimica et Cosmochimica Acta, 2012, 95: 15-34. |
[54] | 曹乐. 巴丹吉林沙漠湖岸钙华沉积机制研究[D]. 石家庄: 中国地质科学院, 2017. |
[Cao Le. Study of the precipitation mechanism of tufa at lake shore in Badain Jaran Desert[D]. Shijiazhuang: Chinese Academy of Geological Sciences, 2017. ] | |
[55] |
胡文峰, 王乃昂, 赵力强, 等. 巴丹吉林沙漠典型湖泊湖气界面水-热交换特征[J]. 地理科学进展, 2015, 34(8): 1061-1071.
doi: 10.18306/dlkxjz.2015.08.013 |
[Hu Wenfeng, Wang Nai’ang, Zhao Liqiang, et al. Water-heat exchange over a typical lake in Badain Jaran Desert, China[J]. Progress in Geography, 2015, 34(8): 1061-1071. ]
doi: 10.18306/dlkxjz.2015.08.013 |
|
[56] | Dong C, Wang N, Chen J, et al. New observational and experimental evidence for the recharge mechanism of the lake group in the Alxa Desert, north-central China[J]. Journal of Arid Environments, 2016, 124: 48-61. |
[57] | Li H, Liu X, Arnold A, et al. Mass 47 clumped isotope signatures in modern lacustrine authigenic carbonates in western China and other regions and implications for paleotemperature and paleoelevation reconstructions[J]. Earth and Planetary Science Letters, 2021, 562: 116840, doi: 10.1016/j.epsl.2021.116840. |
[58] | 杨萍. 巴丹吉林沙漠不同生态系统CO2交换及其影响因素研究[D]. 兰州: 兰州大学, 2022. |
[Yang Ping. Research on CO2 exchange for different ecosystems and its influence factors in the Badain Jaran Desert[D]. Lanzhou: Lanzhou University, 2022. ] | |
[59] | Guo W. Carbonate clumped isotope thermometry: Application to carbonaceous chondrites & effects of kinetic isotope fractionation[D]. Pasadena: California Institute of Technology, 2008. |
[60] | 吴月. 巴丹吉林沙漠地下水同位素特征与地下水年龄研究[D]. 兰州: 兰州大学, 2014. |
[Wu Yue. Isotopic characteristics and dating of groundwater in the Badain Jaran Desert[D]. Lanzhou: Lanzhou University, 2014. ] | |
[61] | Su X, Lu C, Li M, et al. Hydrologic partition and maintenance mechanism of Badain Jaran Desert lake group indicated by hydrogen and oxygen stable isotopes, northwest China[J]. Environmental Earth Sciences, 2022, 82(1): 1-13. |
[1] | 张新毅, 范小露, 田明中. 巴丹吉林沙漠晚更新世沉积物矿物学特征及其指示意义[J]. 干旱区地理, 2022, 45(6): 1773-1783. |
[2] | 范小露,张新毅,田明中. 巴丹吉林沙漠东南缘末次冰期沉积物地球化学特征及气候指示意义[J]. 干旱区地理, 2021, 44(2): 409-417. |
[3] | 宁凯,王乃昂,李卓仑,杨振京,毕志伟,王奕心,王攀,孙杰. 基于CMB模型的巴丹吉林沙漠沙源区分析[J]. 干旱区地理, 2021, 44(2): 389-399. |
[4] | 范小露,田明中,刘斯文. 巴丹吉林沙漠东南部末次间冰期环境演变:来自粒度、光释光(OSL)及14C测年的证据[J]. 干旱区地理, 2014, 37(5): 892-900. |
[5] | 张克存,奥迎焕,屈建军,安志山. 巴丹吉林沙漠湖泊-沙山近地表风沙动力环境[J]. 干旱区地理, 2013, 36(5): 790-794. |
|