干旱区地理 ›› 2022, Vol. 45 ›› Issue (3): 814-825.doi: 10.12118/j.issn.1000-6060.2021.384
收稿日期:
2021-08-29
修回日期:
2021-12-05
出版日期:
2022-05-25
发布日期:
2022-05-31
作者简介:
鲍晶(1990-),女,博士,讲师,主要从事青藏高原风化剥蚀与古气候变化研究. E-mail: 基金资助:
BAO Jing1(),YE Chengcheng2,LI Bingshuai1
Received:
2021-08-29
Revised:
2021-12-05
Online:
2022-05-25
Published:
2022-05-31
摘要:
沉积物中粘土矿物类型主要有自生粘土矿物和碎屑粘土矿物。其中,自生粘土矿物含量较少,是在沉积环境中形成,可能是沉积再循环或成岩作用的产物,可作为沉积环境某方面的指示标志;而碎屑粘土矿物是母岩风化的产物,受沉积环境影响较小,能够有效示踪物源区化学风化过程,进而反映古气候变化。近年来利用碎屑粘土矿物特征来重建物源区古气候的方法得到了广泛的应用。然而,由于粘土矿物主要存在于<2 μm硅酸盐粘粒中,粘土矿物的提取、鉴定比较困难,且自生粘土矿物易受沉积环境等的影响。因此,在利用粘土矿物重建古气候变化时,需慎重选择粘土矿物的提取方法,并考虑物源和沉积环境变化以及成岩作用等对粘土矿物解释的影响。本文以柴达木盆地东北缘怀头他拉剖面硅酸盐粘土矿物的提取、鉴定及其古环境指示意义为例,介绍粘土矿物的提取及应用,为后期粘土矿物研究提供参考。
鲍晶,叶程程,栗兵帅. 粘土矿物的提取、鉴定及其古气候意义——以柴达木盆地怀头他拉剖面为例[J]. 干旱区地理, 2022, 45(3): 814-825.
BAO Jing,YE Chengcheng,LI Bingshuai. Extraction, identification and paleoclimatic significance of clay minerals: A case of the Huaitoutala section in Qaidam Basin[J]. Arid Land Geography, 2022, 45(3): 814-825.
[1] |
Bao J, Song C, Yang Y, et al. Reduced chemical weathering intensity in the Qaidam Basin (NE Tibetan Plateau) during the Late Cenozoic[J]. Journal of Asian Earth Sciences, 2019, 170: 155-165.
doi: 10.1016/j.jseaes.2018.10.018 |
[2] |
West A J, Galy A, Bickle M J. Tectonic and climatic controls on silicate weathering[J]. Earth Planetary Science Letters, 2005, 235(1-2): 211-228.
doi: 10.1016/j.epsl.2005.03.020 |
[3] | 鲍晶. 柴达木盆地沉积通量及元素地球化学记录的新生代风化剥蚀[D]. 兰州: 兰州大学, 2017. |
[ Baojing. Cenozoic sediment flux and geochemical records in the Qaidam Basin, northern Tibetan Plateau, and their implications for weathering and denudation[D]. Lanzhou: Lanzhou University, 2017. ] | |
[4] | 陈骏, 安芷生, 刘连文, 等. 最近2.5 Ma以来黄土高原风尘化学组成的变化与亚洲内陆的化学风化[J]. 中国科学(D辑: 地球科学), 2001, 31(2): 136-145. |
[ Chen Jun, An Zhisheng, Liu Lianwen, et al. Changes in chemical composition of aeolian dust in Loess Plateau and chemical weathering in inland Asia since 2.5 Ma[J]. Science in China (Series D), 2001, 31(2): 136-145. ] | |
[5] | 王朝文. 青藏高原北缘新生代盆地沉积物粘土矿物特征及其对构造与气候演化的指示[D]. 北京: 中国地质大学, 2015. |
Wang Chaowen. Clay mineralogical characteristics of the Cenozoic sediments from the northern Qinghai-Tibetan Plateau: Indictors for tectonic and climatic evolution[D]. Beijing: China University of Geosciences, 2015. ] | |
[6] |
White A F, Blum A E. Effects of climate on chemical weathering in watersheds[J]. Geochimica et Cosmochimica Acta, 1995, 59(9): 1729-1747.
doi: 10.1016/0016-7037(95)00078-E |
[7] |
Wei G, Li X H, Liu Y, et al. Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China Sea[J]. Paleoceanography, 2006, 21(4): doi: 10.1029/2006PA001300.
doi: 10.1029/2006PA001300 |
[8] |
Clift P D, Hodges K, Heslop D, et al. Greater Himalayan exhumation triggered by early Miocene monsoon intensification[J]. Nature Geoscience, 2008, 1: 875-880.
doi: 10.1038/ngeo351 |
[9] |
Jian X, Guan P, Zhang W, et al. Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam Basin, northeastern Tibetan Plateau: Implications for provenance and weathering[J]. Chemical Geology, 2013, 360-361: 74-88.
doi: 10.1016/j.chemgeo.2013.10.011 |
[10] |
Song B W, Zhang K X, Zhang L, et al. Qaidam Basin paleosols reflect climate and weathering intensity on the northeastern Tibetan Plateau during the early Eocene climatic optimum[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 512: 6-22.
doi: 10.1016/j.palaeo.2018.03.027 |
[11] |
Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate[J]. Nature, 1992, 359(6391): 117-122.
doi: 10.1038/359117a0 |
[12] |
Fang X M, Galy A, Yang Y B, et al. Paleogene global cooling-induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau[J]. Geology, 2019, 47(10): 992-996.
doi: 10.1130/G46422.1 |
[13] | Fedo C M, Wayne N H, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924. |
[14] |
Yang Y, Fang X, Galy A, et al. Plateau uplift forcing climate change around 8.6 Ma on the northeastern Tibetan Plateau: Evidence from an integrated sedimentary Sr record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 461: 418-431.
doi: 10.1016/j.palaeo.2016.09.002 |
[15] | 杨一博, 方小敏, Albert Galy, 等. 柴达木盆地西部第四纪气候变化和流域风化[J]. 第四纪研究, 2018, 38(1): 76-85. |
[ Yang Yibo, Fang Xiaomin, Albert Galy, et al. Quaternary climate change and catchment weathering in the western Qaidam Basin[J]. Quatermary Sciences, 2018, 38(1): 76-85. ] | |
[16] |
Fang X M, Zhang W L, Meng Q Q, et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth Planetary Science Letters, 2007, 258(1-2): 293-306.
doi: 10.1016/j.epsl.2007.03.042 |
[17] | 应红, 宋春晖, 鲍晶, 等. 柴达木盆地东北缘中中新世以来古气候变化[J]. 第四纪研究, 2016, 36(4): 847-858. |
[ Ying Hong, Song Chunhui, Bao Jing, et al. Paleoclimate change since the Middle Miocene in the northeastern Qaidam Basin[J]. Quaternary Sciences, 2016, 36(4): 847-858. ] | |
[18] | 余平辉, 马锦龙, 廖建波, 等. 柴达木盆地昆北地区路乐河组/下干柴沟组泥岩地层地球化学特征及古环境意义[J]. 干旱区地理, 2020, 43(3): 679-686. |
[ Yu Pinghui, Ma Jinlong, Liao Jianbo, et al. Geochemistry and paleoenvironment significance of Lulehe Formation/Xiaganchaigou Formation located in the north area of Qaidam Basin[J]. Arid Land Geography, 2020, 43(3): 679-686. ] | |
[19] | 胡彬, 张春霞, 郭正堂. 石膏岩中粘土矿物提取的一种新方法及在古气候重建中的应用[J]. 第四纪研究, 2016, 36(4): 926-934. |
[ Hu Bin, Zhang Chunxia, Guo Zhengtang. A new method of clay mineral extraction from gypsum layer and its application in paleoclimate reconstruction[J]. Quaternary Sciences, 2016, 36(4): 926-934. ] | |
[20] | 林西生. X射线衍射分析技术及其地质应用[M]. 北京: 石油工业出版社, 1990: 21-28. |
[ Lin Xisheng. X-ray diffraction analysis technique and its geological application[M]. Beijing: Petroleum Industry Press, 1990: 21-28. ] | |
[21] | 李琍. 沉积岩中粘土矿物提纯方法[J]. 地质科学, 1982(1): 117-120. |
[ Li Li. The method for purifying clay minerals of sedimentary rocks[J]. Scientia Geologica Sinica, 1982(1): 117-120. ] | |
[22] | 黄宝玲, 王大锐. 沉积岩中自生粘土矿物分离提纯方法的改进[J]. 岩矿测试, 2001, 20(3): 214-216. |
[ Huang Baoling, Wang Darui. An improved method for separation of authigenic clay minerals from sedimentary rocks[J]. Rock and Mineral Analysis, 2001, 20(3): 214-216. ] | |
[23] | 冯雪, 吴朝东, 奚娴婷. 碎屑岩黏土分离的一些改进[J]. 石油实验地质, 2006, 28(2): 196-200. |
[ Feng Xue, Wu Chaodong, Xi Xianting. Improvements for clay separation from clastic samples[J]. Petroleum Geology & Experiment, 2006, 28(2): 196-200. ] | |
[24] | SY/T 5163-2010. 沉积岩中粘土矿物和常见非粘土矿物X衍射分析方法[S].北京: 石油工业出版社, 2010. |
[ SY/T 5163-2010. Analysis method for clay minerals and ordinary non-clay minerals in sedimentary rocks by the X-ray diffraction[S].Bejing: Petroleum Industry Publishing House, 2010. ] | |
[25] | Chamley H. Clay sedimentology[M]. New York: Springer-Verlag, 1989: 325-328. |
[26] | 叶程程. 柴达木盆地新生代化学风化的粘土矿物与地球化学记录[D]. 北京: 中国科学院青藏高原研究所, 2017. |
[ Ye Chengcheng. Cenozoic chemical weathering process in the Qaidam Basin derived from clay minerals and geochemistry records[D]. Beijing: Institute of Tibetan Plateau Research Chinese Academy Sciences, 2017. ] | |
[27] | 脱世博. 柴达木盆地东北部中新世沉积物粘土矿物变化特征与化学风化及其古气候意义[D]. 兰州: 兰州大学, 2013. |
[ Tuo Shibo. Characteristic changes of the clay minerals, chemical weathering and paleoclimatic significance in the Miocene, northeastern of the Qaidam Basin[D]. Lanzhou: Lanzhou University, 2013. ] | |
[28] |
洪汉烈, 王朝文, 徐耀明, 等. 青藏高原新生代以来气候环境演化的粘土矿物学特征[J]. 地球科学(中国地质大学学报), 2010, 35(5): 728-736.
doi: 10.3799/dqkx.2010.087 |
[ Hong Hanlie, Wang Chaowen, Xu Yaoming, et al. Paleoclimate evolution of the Qinghai-Tibet Plateau since the Cenozoic[J]. Earth Science-Journal of China University of Geosciences, 2010, 35(5): 728-736. ]
doi: 10.3799/dqkx.2010.087 |
|
[29] | Adams J S, Kraus M J, Wing S L. Evaluating the use of weathering indices for determining mean annual precipitation in the ancient stratigraphic record[J]. Palaeogeogrphy, Palaeoclimatology, Palaeoecology, 2011, 309(3-4): 358-366. |
[30] | 万世明. 近2千万年以来东亚季风演化的南海沉积矿物学记录[D]. 北京: 中国科学院海洋研究所, 2006. |
[ Wan Shiming. Evolution of the East Asian monsoon:Mineralogical and sedimentologic records in the South China Sea since 20 Ma[D]. Beijing: Institute of Oceanology of the Chinese Academy of Sciences, 2006. ] | |
[31] | 范小露, 张新毅, 田明中. 巴丹吉林沙漠东南缘末次冰期沉积物地球化学特征及气候指示意义[J]. 干旱区地理, 2021, 44(2): 409-417. |
[ Fan Xiaolu, Zhang Xinyi, Tian Mingzhong. Geochemical characteristics and paleoclimatic significance of the last glacial sediments in the southeastern margin of Badain Jaran Desert[J]. Arid Land Geography, 2021, 44(2): 409-417. ] | |
[32] |
Nesbitt H, Young G. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299: 715-717.
doi: 10.1038/299715a0 |
[33] |
Ye C C, Yang Y B, Fang X M, et al. Chlorite chemical composition change in response to the Eocene-Oligocene climate transition on the northeastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 512: 23-32.
doi: 10.1016/j.palaeo.2018.03.014 |
[34] |
Hays J D, Imbrie J, Shackleton N J. Variations of the earth’s orbit: Pacemaker of the ice age[J]. Science, 1976, 194(4270): 1121-1132.
pmid: 17790893 |
[35] |
Grathoff G H. Illite polytype quantification using wildfire calculated X-ray diffraction patterns[J]. Clays and Clay Minerals, 1996, 44: 835-842.
doi: 10.1346/CCMN.1996.0440615 |
[36] |
Hillier S. Origin, diagenesis, and mineralogy of chlorite minerals in Devonian lacustrine mudrocks, Orcadian Basin, Scotland[J]. Clays and Clay Minerals, 1993, 41(2): 240-259.
doi: 10.1346/CCMN.1993.0410211 |
[37] |
Hong H L, Yu N, Xiao P, et al. Authigenetic palygorskite in Miocene sediments in Linxia Basin, Gansu, northwestern China[J]. Clay Minerals, 2007, 42(1): 45-58.
doi: 10.1180/claymin.2007.042.1.04 |
[38] | Weaver C E. Clays, muds, and shales: Development in sedimentology[M]. Amsterdam: Elsevier, 1989: 21-30. |
[39] | Weaver C E. Shale-slate metamorphism in southern Appalachians[M]. Amsterdam: Eisevier 1984: 1-10. |
[40] |
Yang Y, Fang X, Galy A, et al. Paleoclimatic significance of rare earth element record of the calcareous lacustrine sediments from a long core (SG-1) in the western Qaidam Basin, NE Tibetan Plateau[J]. Journal of Geochemical Exploration, 2014, 145: 223-232.
doi: 10.1016/j.gexplo.2014.06.013 |
[41] |
McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101: 295-303.
doi: 10.1086/648222 |
[42] |
Bao J, Wang Y, Song C, et al. Cenozoic sediment flux in the Qaidam Basin, northern Tibetan Plateau, and implications with regional tectonics and climate[J]. Global and Planetary Change, 2017, 155: 56-69.
doi: 10.1016/j.gloplacha.2017.03.006 |
[43] |
Zhang T, Han W, Fang X, et al. Tectonic control of a change in sedimentary environment at -10 Ma in the northeastern Tibetan Plateau[J]. Geophysical Research Letters, 2018, 45(14): 6843-6852.
doi: 10.1029/2018GL078460 |
[44] |
Bush M A, Saylor J E, Horton B K, et al. Growth of the Qaidam Basin during Cenozoic exhumation in the northern Tibetan Plateau: Inferences from depositional patterns and multiproxy detrital provenance signatures[J]. Lithosphere, 2016, 8: 58-82.
doi: 10.1130/L449.1 |
[45] | 赵杏媛, 张有瑜. 粘土矿物与粘土矿物分析[M]. 北京: 海洋出版社, 1990: 35-40. |
[ Zhao Xingyuan, Zhang Youyu. Clay minerals and clay mineral analysis[M]. Beijing: Maritime Press, 1990: 35-40. ] |
[1] | 王利杰, 肖锋军, 董治宝, 马慧榕, 陈颢. 柴达木盆地巨型沙波纹条带表层沉积物粒度和地球化学元素组成特征[J]. 干旱区地理, 2023, 46(11): 1826-1835. |
[2] | 周学文,魏晓,陈鹏,石天宇,惠争闯. 青藏高原东北缘武山盆地中中新世炭屑记录及其古气候意义[J]. 干旱区地理, 2022, 45(3): 826-835. |
[3] | 潘佩翀,时洋,赵智丰,王佳,曹炯玮,柏文文,解宏伟,魏加华. 干旱内陆区声波干预下降雨微物理特征研究[J]. 干旱区地理, 2021, 44(4): 906-913. |
[4] | 范小露,张新毅,田明中. 巴丹吉林沙漠东南缘末次冰期沉积物地球化学特征及气候指示意义[J]. 干旱区地理, 2021, 44(2): 409-417. |
[5] | 余平辉, 马锦龙, 廖建波, 李志勇, 邸俊. 柴达木盆地昆北地区路乐河组/下干柴沟组泥岩地层地球化学特征及古环境意义 [J]. 干旱区地理, 2020, 43(3): 679-686. |
[6] | 王懿萱, 陈天源, 吴蝉, 赖忠平, 郭守栋, 丛禄. 柴达木盆地西台吉乃尔盐湖沉积的年代学研究[J]. 干旱区地理, 2019, 42(4): 876-884. |
[7] | 杜丁丁, Muhammad Saleem Mughal, Dembele Blaise, 张成君. 青藏高原中部色林错湖泊沉积物色度反映末次冰盛期以来区域古气候演化[J]. 干旱区地理, 2019, 42(3): 551-558. |
[8] | 吕志强, 鲁瑞洁, 刘小槺, 杜婧, 陈璐, 李腾飞. 青海湖湖东沙地沉积记录的全新世以来风沙活动变化[J]. 干旱区地理, 2018, 41(3): 536-544. |
[9] | 李博, 曾彪, 杨太保. 1982-2015年柴达木盆地不同流域植被气候响应差异[J]. 干旱区地理, 2018, 41(3): 449-458. |
[10] | 顾晓敏, 张戈, 郝奇琛, 邵景力, 崔亚莉, 张秋兰, 肖勇. 基于TOUGH2的柴达木盆地诺木洪剖面地下水流模拟[J]. 干旱区地理, 2016, 39(3): 548-554. |
[11] | 王学佳,庞奖励,黄春长,周亚利,卞鸿雁,张玉柱,高鹏坤. 汉江上游弥陀寺黄土-古土壤序列的化学风化特征及其环境意义[J]. 干旱区地理, 2014, 37(6): 1191-1198. |
[12] | 范小露,田明中,刘斯文. 巴丹吉林沙漠东南部末次间冰期环境演变:来自粒度、光释光(OSL)及14C测年的证据[J]. 干旱区地理, 2014, 37(5): 892-900. |
[13] | 陈剑,崔之久. 云南白马雪山垭口早更新世泥石流的发育特征及其古气候和构造意义[J]. 干旱区地理, 2014, 37(2): 203-211. |
[14] | 安福元,马海州,魏海成,樊启顺,韩文霞. 柴达木盆地察尔汗湖相沉积物的粒度分布模式及其环境意义[J]. 干旱区地理, 2013, 36(2): 212-220. |
[15] | 张明震,戴霜,张永全,苗运法,刘俊伟,黄永波,赵杰,刘学. 六盘山地区寺口子剖面早白垩世晚期的孢粉组合及其环境意义[J]. 干旱区地理, 2012, 35(01): 99-108. |
|