[1] |
信忠保, 蔡强国, 宁堆虎, 等. 淤地坝与check dam的差异及其英文译法[J]. 中国水土保持科学, 2022, 20(3): 102-108.
|
|
[ Xin Zhongbao, Cai Qiangguo, Ning Duihu, et al. A new English term of ‘Yudiba dam’ and its differences from check dam[J]. Science of Soil and Water Conservation, 2022, 20(3): 102-108. ]
|
[2] |
马建全, 吴钶桥, 李识博, 等. 黄土高原淤地坝溃决型泥石流易发性评价[J]. 科学技术与工程, 2022, 22(17): 6869-6879.
|
|
[ Ma Jianquan, Wu Keqiao, Li Shibo, et al. Evaluation on the vulnerability of debris flow caused by the collapse of check dam on the Loess Plateau[J]. Science, Technology and Engineering, 2022, 22(17): 6869-6879. ]
|
[3] |
孙维营, 史学建, 张攀, 等. 小流域不同淤地坝系布局拦沙级联效应研究[J]. 人民黄河, 2016, 38(9): 82-85.
|
|
[ Sun Weiying, Shi Xuejian, Zhang Pan, et al. Study on the cascade effect of sediment retaining by different warping dam systems in small watershed[J]. Yellow River, 2016, 38(9): 82-85. ]
|
[4] |
杨松, 张岩, 阿尼克孜·肉孜, 等. 陕北黄土区植被恢复对切沟发育速率的影响[J]. 中国水土保持科学, 2016, 14(4): 18-25.
|
|
[ Yang Song, Zhang Yan, Rouzi Anikezi, et al. Effects of vegetation restoration on gully development rates in northern Shaanxi[J]. Science of Soil and Water Conservation, 2016, 14(4): 18-25. ]
|
[5] |
马煜栋, 杨帅, 韩静, 等. 陕西榆林地区无定河流域淤地坝遥感解译[J]. 干旱区地理, 2022, 45(3): 786-791.
|
|
[ Ma Yudong, Yang Shuai, Han Jing, et al. Remote sensing interpretation of check dams in Wuding River Basin in Yulin Area of Shaanxi Province[J]. Arid Land Geography, 2022, 45(3): 786-791. ]
|
[6] |
Gong C, Han J W, Lu X Q. Remote sensing image scene classification: Benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865-1883.
doi: 10.1109/JPROC.2017.2675998
|
[7] |
Talukdar S, Singha P, Mahato S, et al. Land-use land-cover classification by machine learning classifiers for satellite observations: A review[J]. Remote Sensing, 2020, 12(7): 1135, doi: 10.3390/rs12071135.
|
[8] |
Hossain M D, Chen D. Segmentation for object-based image analysis (OBIA): A review of algorithms and challenges from remote sensing perspective[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 115-134.
doi: 10.1016/j.isprsjprs.2019.02.009
|
[9] |
Cheng G, Han J. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 11-28.
doi: 10.1016/j.isprsjprs.2016.03.014
|
[10] |
Qiang Q Y, Huan F S, Li T W, et al. Deep learning in environmental remote sensing: Achievements and challenges[J]. Remote Sensing of Environment, 2020, 241: 111716, doi: 10.1016/j.rse.2020.111716.
|
[11] |
Cheng G, Xing X X, Jun W H, et al. Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3735-3756.
doi: 10.1109/JSTARS.4609443
|
[12] |
Shakya A, Biswas M, Pal M. Parametric study of convolutional neural network based remote sensing image classification[J]. International Journal of Remote Sensing, 2021, 42(7): 2663-2685.
doi: 10.1080/01431161.2020.1857877
|
[13] |
Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
doi: 10.1038/nature14539
|
[14] |
Chen Y Y, Ming D P, Lü X W. Superpixel based land cover classification of VHR satellite image combining multi-scale CNN and scale parameter estimation[J]. Earth Science Informatics, 2019, 12(3): 341-363.
doi: 10.1007/s12145-019-00383-2
|
[15] |
Tong X Y, Xia G S, Lu Q, et al. Learning transferable deep models for land-use classification with high-resolution remote sensing images[J]. arXiv, 2018, 3: 05713, doi: 10.48550/arXiv.1807.05713.
|
[16] |
Zhao W Z, Du S H. Learning multiscale and deep representations for classifying remotely sensed imagery[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2016, 113: 155-165.
|
[17] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
doi: 10.1145/3065386
|
[18] |
Shin H C, Roth H R, Gao M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1285-1298.
doi: 10.1109/TMI.42
|
[19] |
Bhowmick S, Nagarajaiah S, Veeraraghavan A. Vision and deep learning-based algorithms to detect and quantify cracks on concrete surfaces from UAV videos[J]. Sensors, 2020, 20(21): 6299, doi: 10.3390/s20216299.
|
[20] |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015.
|
[21] |
Li S J, Xiong L Y, Tang G A, et al. Deep learning-based approach for landform classification from integrated data sources of digital elevation model and imagery[J]. Geomorphology, 2020, 354: 107045, doi: 10.1016/j.geomorph.2020.107045.
|
[22] |
陈晓征. 基于高精度DEM的黄土淤地坝信息提取及特征分析[D]. 南京: 南京师范大学, 2020.
|
|
[ Chen Xiaozheng. Information extraction and feature analysis of loess check dam based on high-precision DEM[D]. Nanjing: Nanjing Normal University, 2020. ]
|
[23] |
Yang X, Wang Y, Byrne R, et al. Concepts of artificial intelligence for computer-assisted drug discovery[J]. Chemical Reviews, 2019, 119(18): 10520-10594.
doi: 10.1021/acs.chemrev.8b00728
pmid: 31294972
|
[24] |
Li S J, Xiong L Y, Hu G H, et al. Extracting check dam areas from high-resolution imagery based on the integration of object-based image analysis and deep learning[J]. Land Degradation and Development, 2021, 32(7): 2303-2317.
doi: 10.1002/ldr.v32.7
|
[25] |
董斯齐, 黄翀. 粤港澳大湾区陆源氮污染来源结构与空间分布[J]. 环境科学, 2021, 42(11): 5384-5393.
doi: 10.1021/es801743s
|
|
[ Dong Siqi, Huang Chong. Source structure and spatial distribution of terrestrial nitrogen pollution in Guangdong Hong Kong Macao Greater Bay area[J]. Environmental Science, 2021, 42(11): 5384-5393. ]
doi: 10.1021/es801743s
|
[26] |
Stehman S V, Foody G M. Key issues in rigorous accuracy assessment of land cover products[J]. Remote Sensing of Environment, 2019, 231: 111199, doi: 10.1016/j.rse.2019.05.018.
|