干旱区地理 ›› 2022, Vol. 45 ›› Issue (4): 1254-1267.doi: 10.12118/j.issn.1000-6060.2021.436
张凯莉1(),冯荣荣1,刘潭2,张志成1,韩佳宁1,刘康1,3()
收稿日期:
2021-09-27
修回日期:
2021-12-13
出版日期:
2022-07-25
发布日期:
2022-08-11
通讯作者:
刘康
作者简介:
张凯莉(1993-),女,博士,主要从事生态规划和生态系统评估等方面的研究. E-mail: 基金资助:
ZHANG Kaili1(),FENG Rongrong1,LIU Tan2,ZHANG Zhicheng1,HAN Jianing1,LIU Kang1,3()
Received:
2021-09-27
Revised:
2021-12-13
Online:
2022-07-25
Published:
2022-08-11
Contact:
Kang LIU
摘要:
关注生态系统服务价值(Ecosystem service value,ESV)与城市化耦合协调互动关系,对黄河流域高质量发展大有裨益。文章运用熵权法、耦合协调模型、空间自相关模型,障碍度模型分析了城市化与ESV的耦合协调关系及主导障碍因素。结果表明:(1) 1995—2018年,黄河流域ESV发生了很大的改善,整体增加了33.05×109元,且以调节服务为主导,草地、林地、耕地服务价值对总ESV贡献率较高。单位面积生态系统服务价值(PE)呈现南高北低、中游高上下游低的空间格局。(2) PE与城市化耦合协调度(Coupling coordination degree,CCD)逐渐改善,轻度耦合协调增加了27.12%,严重失调类型减少了45.46%,耦合亚型从城市化滞后型转变为ESV滞后型;从空间上看,CCD呈现南高北低、中游优于上游和下游的空间格局,协调度具有显著的空间正相关性,存在明显的高-高和低-低集聚特征,高-高集聚区主要分布在ESV高且城市化水平相对较高的中游和下游地区,低-低集聚区主要分布在ESV较低的上游地区。(3) 1995—2018年主导障碍因素未发生明显改变,ESV系统以调节服务为主,而城市化系统以经济子系统和社会子系统为主。基于此,应厘清ESV和城市化耦合协调关系,关注城市化进程对区域生态系统服务能力和生态安全格局的影响,实现流域整体优质协调发展。
张凯莉,冯荣荣,刘潭,张志成,韩佳宁,刘康. 黄河流域城市化与生态系统服务价值协调性及障碍因素研究[J]. 干旱区地理, 2022, 45(4): 1254-1267.
ZHANG Kaili,FENG Rongrong,LIU Tan,ZHANG Zhicheng,HAN Jianing,LIU Kang. Coordination and obstacle factors of urbanization and ecosystem service value in the Yellow River Basin[J]. Arid Land Geography, 2022, 45(4): 1254-1267.
表1
城市化综合评价指标体系"
准则层 | 指标层 | 单位 | 权重 |
---|---|---|---|
人口城市化 | 人口密度 | 人∙km-2 | 0.041 |
城镇人口密度 | 人∙km-2 | 0.054 | |
非农人口比重 | % | 0.022 | |
空间城市化 | 建成区占土地总面积百分比 | % | 0.063 |
每万人的市区面积 | km2 | 0.070 | |
人均铺装道路面积 | m2 | 0.039 | |
人均绿地面积 | 人∙m-2 | 0.051 | |
建成区绿化覆盖率 | % | 0.013 | |
经济城市化 | 人均国内生产总值 | 元 | 0.063 |
二、三产业占GDP比重 | % | 0.005 | |
限额以上工业总产值 | 104元 | 0.103 | |
固定资产投资总额 | 104元 | 0.088 | |
人均财政收入 | 元 | 0.080 | |
职工平均工资 | 元 | 0.059 | |
社会城市化 | 人均消费品零售总额 | 元 | 0.075 |
中小学生在校人数 | 104人 | 0.035 | |
人均公共图书馆藏书 | 册 | 0.045 | |
万人拥有医疗床位 | 张 | 0.016 | |
万人互联网用户 | 104人 | 0.076 |
表2
研究模型及指标"
研究模型 | 计算公式 | 模型释义 | 意义 |
---|---|---|---|
极值标准化 | | Xmj为系统m,指标j归一化后的值;xmj为各系统的原始取值;max(xmj)与min(xmj)分别为各系统j个指标的最大值和最小值 | 消除数据间屏蔽效应和量纲差异 |
熵权法 | | Xpj为第p个城市j指标的归一化值;Wj为各指标权重; | 客观确定指标权重 |
综合发展指数 | | 当m取E时, | 获得子系统的综合效益 |
欧式距离耦合度 | | Cit为两系统耦合度,以w1t、 | Cit取值在(0, 1)之间,Cit值越大,说明系统实际耦合协调状态与理想状态距离更贴合,耦合度越高 |
耦合协调度 | | CCDit为协调度;Tit为耦合协调发展水平指数,取 | 具体分级见 |
Moran’I检验 | | I为全局莫兰指数,取值在(-1, 1)之间,大于0代表正相关,即高值与高值临近,小于0代表负相关,即高值与低值临近;wij为空间权重矩阵;xi、xj分别为要素i、j的属性值; | 空间自相关检验 |
局部Geary指数 | | C为吉尔里指数(Geary)指数,取值在(0, 2)之间,大于1表示负相关,小于1表示正相关,一般认为其比莫兰指数对局部空间相关更为敏感; | 局部空间自相关检验,识别空间集聚模式 |
障碍度 | | Qj为障碍度;Wj为因子贡献度,一般用指标权重表示;Ij为指标偏离度,指标实际值与最优值之间差距,用1与标准化值Xij之差表示[ | 识别影响两系统耦合协调关系的主导障碍因素 |
表3
耦合关系的判断标准"
协调大类 | 耦合协调度 | 对比关系 | 亚类型 |
---|---|---|---|
严重失调型 | 0.0≤CCD≤0.2 | U-E>0.1 | 严重失调ESV滞后型 |
|E-U|≤0.1 | 严重失调同步型 | ||
E-U>0.1 | 严重失调城市化滞后型 | ||
轻度失调型 | 0.2<CCD≤0.4 | U-E>0.1 | 轻度失调ESV滞后型 |
|E-U|≤0.1 | 轻度失调同步型 | ||
E-U>0.1 | 轻度失调城市化滞后型 | ||
轻度耦合协调 | 0.4<CCD≤0.6 | U-E>0.1 | 轻度耦合协调ESV滞后型 |
|E-U|≤0.1 | 轻度耦合协调同步型 | ||
E-U>0.1 | 轻度耦合协调城市化滞后型 | ||
良好耦合协调 | 0.6<CCD≤0.8 | U-E>0.1 | 良好耦合协调ESV滞后型 |
|E-U|≤0.1 | 良好耦合协调同步型 | ||
E-U>0.1 | 良好耦合协调城市化滞后型 | ||
优质耦合协调 | CCD>0.8 | U-E>0.1 | 优质耦合协调ESV滞后型 |
|E-U|≤0.1 | 优质耦合协调同步型 | ||
E-U>0.1 | 优质耦合协调城市化滞后型 |
表4
1995—2018年土地利用面积变化"
土地利用面积变化 | 年份 | 耕地 | 林地 | 草地 | 水体 | 湿地 | 建筑用地 | 未利用地 |
---|---|---|---|---|---|---|---|---|
土地利用面积/105 hm2 | 1995 | 348.65 | 121.75 | 369.54 | 3.75 | 11.59 | 36.39 | 77.50 |
2005 | 348.25 | 129.00 | 353.46 | 4.00 | 13.00 | 41.31 | 80.16 | |
2015 | 341.95 | 129.15 | 348.40 | 4.65 | 12.35 | 54.34 | 78.31 | |
2018 | 337.29 | 129.34 | 348.32 | 4.99 | 14.04 | 58.47 | 76.62 | |
变化量/105 hm2 | 1995—2005 | -0.40 | 7.25 | -16.08 | 0.25 | 1.41 | 4.92 | 2.66 |
2005—2015 | -6.30 | 0.15 | -5.06 | 0.65 | -0.65 | 13.03 | -1.85 | |
2015—2018 | -4.66 | 0.19 | -0.08 | 0.34 | 1.69 | 4.13 | -1.69 | |
1995—2018 | -11.36 | 7.59 | -21.22 | 1.24 | 2.45 | 22.08 | -0.88 | |
变化率/% | 1995—2005 | -0.11 | 5.95 | -4.35 | 6.67 | 12.17 | 13.52 | 3.43 |
2005—2015 | -1.81 | 0.12 | -1.43 | 16.25 | -5.00 | 31.54 | -2.31 | |
2015—2018 | -1.36 | 0.15 | -0.02 | 7.31 | 13.68 | 7.60 | -2.16 | |
1995—2018 | -3.26 | 6.23 | -5.74 | 33.07 | 21.14 | 60.68 | -1.14 |
表5
1995—2018年不同景观类型生态系统服务价值"
ESV | 年份 | 耕地 | 林地 | 草地 | 水体 | 湿地 | 未利用地 | 汇总 |
---|---|---|---|---|---|---|---|---|
ESV/109元 | 1995 | 156.76 | 183.79 | 293.68 | 9.91 | 82.92 | 1.09 | 728.15 |
2000 | 158.98 | 195.16 | 283.86 | 9.56 | 84.40 | 1.08 | 733.04 | |
2005 | 157.27 | 193.59 | 282.20 | 10.04 | 88.34 | 1.08 | 732.52 | |
2010 | 156.33 | 201.44 | 293.60 | 12.90 | 78.60 | 1.04 | 743.91 | |
2015 | 154.76 | 198.64 | 288.63 | 12.67 | 80.46 | 0.99 | 736.15 | |
2018 | 152.32 | 198.99 | 304.99 | 13.23 | 90.58 | 1.09 | 761.20 | |
变化量/109元 | 1995—2000 | 2.22 | 11.37 | -9.82 | -0.35 | 1.48 | -0.01 | 4.89 |
2000—2005 | -1.71 | -1.57 | -1.66 | 0.48 | 3.94 | 0.00 | -0.52 | |
2005—2010 | -0.94 | 7.85 | 11.40 | 2.86 | -9.74 | -0.04 | 11.39 | |
2010—2015 | -1.57 | -2.80 | -4.97 | -0.23 | 1.86 | -0.05 | -7.76 | |
2015—2018 | -2.44 | 0.35 | 16.36 | 0.56 | 10.12 | 0.10 | 25.05 | |
1995—2018 | -4.44 | 15.20 | 11.31 | 3.32 | 7.66 | 0.00 | 33.05 | |
变化率/% | 1995—2000 | 1.42 | 6.19 | -3.34 | -3.53 | 1.78 | -0.92 | 0.67 |
2000—2005 | -1.08 | -0.80 | -0.58 | 5.02 | 4.67 | 0.00 | -0.07 | |
2005—2010 | -0.60 | 4.05 | 4.04 | 28.49 | -11.03 | -3.70 | 1.55 | |
2010—2015 | -1.00 | -1.39 | -1.69 | -1.78 | 2.37 | -4.81 | -1.04 | |
2015—2018 | -1.58 | 0.18 | 5.67 | 4.42 | 12.58 | 10.10 | 3.40 | |
1995—2018 | -2.83 | 8.27 | 3.85 | 33.50 | 9.24 | 0.00 | 4.54 |
表8
城市化与ESV系统准则层障碍度"
年份 | 城市化系统/% | ESV系统/% | ||||||
---|---|---|---|---|---|---|---|---|
人口城市化 | 空间城市化 | 经济城市化 | 社会城市化 | 供给服务 | 调节服务 | 文化服务 | ||
1995 | 10.25 | 22.82 | 42.23 | 24.70 | 23.82 | 59.75 | 16.43 | |
2000 | 10.47 | 22.76 | 42.30 | 24.47 | 24.00 | 59.42 | 16.58 | |
2005 | 10.53 | 22.95 | 41.93 | 24.58 | 24.10 | 59.29 | 16.61 | |
2010 | 10.59 | 23.83 | 40.78 | 24.80 | 24.20 | 59.29 | 16.50 | |
2015 | 10.93 | 25.44 | 39.17 | 24.47 | 24.21 | 59.28 | 16.51 | |
2018 | 11.13 | 27.24 | 38.04 | 23.59 | 24.49 | 59.03 | 16.49 |
表9
主要障碍因子及其障碍度"
年份 | ESV系统/% | ||||
---|---|---|---|---|---|
原料生产 | 气候调节 | 净化环境 | 水文调节 | 美学景观 | |
1995 | 18.46 | 19.89 | 15.87 | 13.89 | 16.43 |
2000 | 18.60 | 20.02 | 16.03 | 13.19 | 16.58 |
2005 | 18.68 | 20.12 | 16.05 | 12.89 | 16.61 |
2010 | 18.60 | 20.01 | 16.01 | 13.03 | 16.50 |
2015 | 18.62 | 20.04 | 16.02 | 12.98 | 16.51 |
2018 | 18.64 | 20.05 | 15.97 | 12.68 | 16.49 |
年份 | 城市化系统/% | ||||
限额以上工业总产值 | 固定资产投资总额 | 人均财政收入 | 人均消费品零售总额 | 万人互联网用户 | |
1995 | 11.06 | 9.44 | 8.59 | 7.97 | 8.17 |
2000 | 11.11 | 9.52 | 8.67 | 7.98 | 8.07 |
2005 | 11.11 | 9.55 | 8.77 | 7.88 | 8.15 |
2010 | 10.90 | 9.59 | 9.02 | 7.64 | 8.27 |
2015 | 10.59 | 9.36 | 9.34 | 6.88 | 8.19 |
2018 | 10.58 | 9.03 | 9.90 | 6.70 | 7.24 |
[1] | Daily G C. Nature’s services: Societal dependence on natural ecosystems[M]. Washington DC: Island Press, 1997: 49-68. |
[2] | Millennium Ecosystem Assessment. People and ecosystems: A framework for assessment[M]. Washington DC: Island Press, 2003: 26-48. |
[3] | Millennium Ecosystem Assessment. Ecosystems and human well-being: Synthesis[M]. Washington DC: Island Press, 2005: 1-9. |
[4] |
Costanza R, D’arge R, Groot R D, et al. The value of the world’s ecosystem services and natural capital[J]. Nature, 1997, 25(1): 3-15.
doi: 10.1038/025003a0 |
[5] | 蒋明卓, 李殿生, 苏欢. 快速城市化地区生态系统服务价值演化及空间自相关特征分析--以河南省洛阳市为例[J]. 林业经济, 2020, 42(7): 51-61. |
[ Jiang Mingzhuo, Li Diansheng, Su Huan. Analysis on the evolution of ecosystem service value and its spatial autocorrelation pattern in rapid urbanization area: Taking Luoyang City in Henan Province as an example[J]. Forestry Economics, 2020, 42(7): 51-61. ] | |
[6] |
Zhou D Y, Tian Y Y, Jiang G H. Spatio-temporal investigation of the interactive relationship between urbanization and ecosystem services: Case study of the Jingjinji urban agglomeration, China[J]. Ecological Indicators, 2018, 95: 152-164.
doi: 10.1016/j.ecolind.2018.07.007 |
[7] |
Grimm N B, Faeth S H, Golubiewski N E, et al. Global change and the ecology of cities[J]. Science, 2008, 319(5864): 756-760.
doi: 10.1126/science.1150195 |
[8] |
赵建吉, 刘岩, 朱亚坤, 等. 黄河流域新型城镇化与生态环境耦合的时空格局及影响因素[J]. 资源科学, 2020, 42(1): 159-171.
doi: 10.18402/resci.2020.01.16 |
[ Zhao Jianji, Liu Yan, Zhu Yakun, et al. Spatiotemporal differentiation and influencing factors of the coupling and coordinated development of new urbanization and ecological environment in the Yellow River Basin[J]. Resources Science, 2020, 42(1): 159-171. ]
doi: 10.18402/resci.2020.01.16 |
|
[9] |
Tian Y Y, Zhou D Y, Jiang G U. Conflict or coordination? Multiscale assessment of the spatio-temporal coupling relationship between urbanization and ecosystem services: The case of the Jingjinji Region, China[J]. Ecological Indicators, 2020, 117: 106543, doi: 10.1016/j.ecolind.2020.106543.
doi: 10.1016/j.ecolind.2020.106543 |
[10] |
Zhang Y S, Lu X, Liu B Y, et al. Spatial relationships between ecosystem services and socioecological drivers across a large-scale region: A case study in the Yellow River Basin[J]. Science of the Total Environment, 2021, 766: 142480, doi: 10.1016/j.scitotenv.2020.142480.
doi: 10.1016/j.scitotenv.2020.142480 |
[11] |
Breuste J, Qureshi S, Li J X. Applied urban ecology for sustainable urban environment[J]. Urban Ecosystems, 2013, 16(4): 675-680.
doi: 10.1007/s11252-013-0337-9 |
[12] |
Li B, Chen D, Wu S, et al. Spatio-temporal assessment of urbanization impacts on ecosystem services: Case study of Nanjing City, China[J]. Ecological Indicators, 2016, 71: 416-427.
doi: 10.1016/j.ecolind.2016.07.017 |
[13] |
Alam M, Dupras J, Messier C. A framework towards a composite indicator for urban ecosystem services[J]. Ecological Indicators, 2016, 60: 38-44.
doi: 10.1016/j.ecolind.2015.05.035 |
[14] |
Peng J, Liu Y, Wu J, et al. Linking ecosystem services and landscape patterns to assess urban ecosystem health: A case study in Shenzhen City, China[J]. Landscape Urban Plan, 2015, 143: 56-68.
doi: 10.1016/j.landurbplan.2015.06.007 |
[15] |
Yuan Y J, Chen D X, Wu S H, et al. Urban sprawl decreases the value of ecosystem services and intensifies the supply scarcity of ecosystem services in China[J]. Science of the Total Environment, 2019, 697: 134170, doi: 10.1016/j.scitotenv.2019.134170.
doi: 10.1016/j.scitotenv.2019.134170 |
[16] |
Liu W, Zhan J Y, Zhao F. Impacts of urbanization-induced land-use changes on ecosystem services: A case study of the Pearl River Delta Metropolitan Region, China[J]. Ecological Indicators, 2019, 98: 228-238.
doi: 10.1016/j.ecolind.2018.10.054 |
[17] | 赵育恒, 曾晨. 武汉城市圈生态服务价值时空演变分析及影响因素[J]. 生态学报, 2019, 39(4): 1426-1440. |
[ Zhao Yuheng, Zeng Chen. Analysis of spatial-temporal evolution and factors that influences ecological service values in Wuhan urban agglomeration, China[J]. Acta Ecologica Sinica, 2019, 39(4): 1426-1440. ] | |
[18] | 徐煖银, 郭泺, 薛达元, 等. 赣南地区土地利用格局及生态系统服务价值的时空演变[J]. 生态学报, 2019, 39(6): 1969-1978. |
[ Xu Xuanyin, Guo Luo, Xue Dayuan, et al. Land use structure and the dynamic evolution of ecosystem service value in Gannan Region, China[J]. Acta Ecologica Sinica, 2019, 39(6): 1969-1978. ] | |
[19] | Peng J, Tian L, Liu Y, et al. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification[J]. Science of the Total Environment. 2017, 607: 706-714. |
[20] | 刘耕源, 杨青, 黄俊勇. 黄河流域近十五年生态系统服务价值变化特征及影响因素研究[J]. 中国环境管理, 2020, 12(3): 90-97. |
[ Liu Gengyuan, Yang Qing, Huang Junyong. The change characteristics and influence factors of ecosystem services valuation of the Yellow River Basin from 2000 to 2015[J]. Chinese Journal of Environmental Management, 2020, 12(3): 90-97. ] | |
[21] | 谷佳贺, 薛华柱, 董国涛, 等. 黄河流域NDVI/土地利用对蒸散发时空变化的影响[J]. 干旱区地理, 2021, 44(1): 158-167. |
[ Gu Jiahe, Xue Huazhu, Dong Guotao, et al. Effects of NDVI/land-use on spatiotemporal changes of evapotranspiration in the Yellow River Basin[J]. Arid Land Geography, 2021, 44(1): 158-167. ] | |
[22] | 谢高地, 肖玉, 甄霖, 等. 我国粮食生产的生态服务价值研究[J]. 中国生态农业学报, 2005, 13(3): 10-13. |
[ Xie Gaodi, Xiao Yu, Zhen Lin, et al. Study on ecosystem services value of food production in China[J]. Chinese Journal of Eco-Agriculture, 2005, 13(3): 10-13. ] | |
[23] | 谢高地, 甄霖, 鲁春霞, 等. 一个基于专家知识的生态系统服务价值化方法[J]. 自然资源学报, 2008, 23(5): 911-919. |
[ Xie Gaodi, Zhen Lin, Lu Chunxia, et al. Expert knowledge based valuation method of ecosystem services in China[J]. Journal of Natural Resources, 2008, 23(5): 911-919. ] | |
[24] | 谢高地, 张彩霞, 张雷明, 等. 基于单位面积价值当量因子的生态系统服务价值化方法改进[J]. 自然资源学报, 2015, 30(8): 1243-1254. |
[ Xie Gaodi, Zhang Caixia, Zhang Leiming, et al. Improvement of the evaluation method for ecosystem service value based on per unit area[J]. Journal of Natural Resources, 2015, 30(8): 1243-1254. ] | |
[25] |
Sun Y X, Liu S L, Dong Y H, et al. Spatio-temporal evolution scenarios and the coupling analysis of ecosystem services with land use change in China[J]. Science of the Total Environment, 2019, 681: 211-225.
doi: 10.1016/j.scitotenv.2019.05.136 |
[26] |
Xu Z H, Wei H J, Fan W G, et al. Energy modeling simulation of changes in ecosystem services before and after the implementation of a Grain-for-Green Program on the Loess Plateau: A case study of the Zhifanggou Valley in Ansai County, Shaanxi Province, China[J]. Ecosystem Services, 2018, 31: 32-43.
doi: 10.1016/j.ecoser.2018.03.013 |
[27] | 南箔, 杨子寒, 毕旭, 等. 生态系统服务价值与人类活动的时空关联分析--以长江中游华阳河湖群地区为例[J]. 中国环境科学, 2018, 38(9): 3531-3541. |
[ Nan Bo, Yang Zihan, Bi Xu, et al. Spatial-temporal correlation analysis of ecosystem services value and human activities: A case study of Huayang Lakes area in the middle reaches of Yangtze River[J]. China Environmental Science, 2018, 38(9): 3531-3541. ] | |
[28] | 谢高地, 张彩霞, 张昌顺, 等. 中国生态系统服务的价值[J]. 资源科学, 2015, 37(9): 1740-1746. |
[ Xie Gaodi, Zhang Caixia, Zhang Changshun, et al. The value of ecosystem services in China[J]. Resources Science, 2015, 37(9): 1740-1746. ] | |
[29] | 周雷雷, 郑诗军, 尹捷, 等. 以“胡焕庸线”为界的中国东西部净初级生产力变化分析[J]. 遥感技术与应用, 2021, 36(4): 916-925. |
[ Zhou Leilei, Zheng Shijun, Yin Jie, et al. Analysis on the change of net primary productivity in the east and west of China bounded by “The Hu Huanyong Line”[J]. Remote Sensing Technology and Application, 2021, 36(4): 916-925. ] | |
[30] |
汤铃, 李建平, 余乐安, 等. 基于距离协调度模型的系统协调发展定量评价方法[J]. 系统工程理论与实践, 2010, 30(4): 594-602.
doi: 10.12011/1000-6788(2010)4-594 |
[ Tang Ling, Li Jianping, Yu Le’an, et al. Quantitative evaluation methodology for system coordination development based on distance coordnation degree model[J]. Systems Engineering-Theory & Practice, 2010, 30(4): 594-602. ]
doi: 10.12011/1000-6788(2010)4-594 |
|
[31] |
方创琳, 崔学刚, 梁龙武. 城镇化与生态环境耦合圈理论及耦合器调控[J]. 地理学报, 2019, 74(12): 2529-2546.
doi: 10.11821/dlxb201912008 |
[ Fang Chuanglin, Cui Xuegang, Liang Longwu. Theoretical analysis of urbanization and eco-environment coupling coil and coupler control[J]. Acta Geographica Sinica, 2019, 74(12): 2529-2546. ]
doi: 10.11821/dlxb201912008 |
|
[32] |
赵书虹, 白梦, 阮梦枝, 等. 云南省旅游资源与生态安全协调发展的时空演化特征及障碍因子分析[J]. 地理科学, 2021, 41(3): 493-503.
doi: 10.13249/j.cnki.sgs.2021.03.014 |
[ Zhao Shuhong, Bai Meng, Ruan Mengzhi, et al. Spatio-temporal evolution characteristics and obstacle factors of coordinated development of tourism resources and ecological security in Yunnan Province[J]. Scientia Geographica Sinica, 2021, 41(3): 493-503. ]
doi: 10.13249/j.cnki.sgs.2021.03.014 |
|
[33] |
Tammi I, Mustajärvi K, Rasinmäki J. Integrating spatial valuation of ecosystem services into regional planning and development[J]. Ecosystem Services, 2016, 26: 329-344.
doi: 10.1016/j.ecoser.2016.11.008 |
[34] |
Ouyang Z Y, Zheng H, Xiao Y, et al. Improvements in ecosystem services from investments in natural capital[J]. Science, 2016, 352(6292): 1455-1459.
doi: 10.1126/science.aaf2295 |
[35] |
Zhou D, Xu J C, Lin Z L. Conflict or coordination? Assessing land use multi-functionalization using production-living-ecology analysis[J]. Science of the Total Environment, 2017, 577: 136-147.
doi: 10.1016/j.scitotenv.2016.10.143 |
[36] |
Chen W X, Zeng J, Zhong M X, et al. Coupling analysis of ecosystem services value and economic development in the Yangtze River Economic Belt: A case study in Hunan Province, China[J]. Remote Sensing, 2021, 13: 1552, doi: 10.3390/rs13081552.
doi: 10.3390/rs13081552 |
[37] |
Xing L, Zhu Y M, Wang J P. Spatial spillover effects of urbanization on ecosystem services value in Chinese cities[J]. Ecological Indicators, 2021, 121: 107028, doi: 10.1016/j.ecolind.2020.107028.
doi: 10.1016/j.ecolind.2020.107028 |
[38] | 谷昊鑫, 秦伟山, 赵明明, 等. 黄河流域旅游经济与生态环境协调发展时空演变及影响因素探究[J]. 干旱区地理, 2022, 45(2): 628-638. |
[ Gu Haoxin, Qin Weishan, Zhao Mingming, et al. Spatial and temporal evolution and influencing factors of coordinated development of tourism economy and ecological environment in the Yellow River Basin[J]. Arid Land Geography, 2022, 45(2): 628-638. ] | |
[39] |
宋永永, 薛东前, 夏四友, 等. 近40a黄河流域国土空间格局变化特征与形成机理[J]. 地理研究, 2021, 40(5): 1445-1463.
doi: 10.11821/dlyj020191065 |
[ Song Yongyong, Xue Dongqian, Xia Siyou, et al. Change characteristics and formation mechanism of the territorial spatial pattern in the Yellow River Basin from 1980 to 2018, China[J]. Geographical Research, 2021, 40(5): 1445-1463. ]
doi: 10.11821/dlyj020191065 |
|
[40] | 杨锐, 曹越. “再野化”: 山水林田湖草生态保护修复的新思路[J]. 生态学报, 2019, 39(23): 8763-8770. |
[ Yang Rui, Cao Yue. Rewilding: New ideas for ecological protection and restoration projects of mountains-rivers-forests-farmlands-lakes-grasslands[J]. Acta Ecologica Sinica, 2019, 39(23): 8763-8770. ] | |
[41] |
Grossi G, Trunova O. Are UN SDGs useful for capturing multiple values of smart city?[J]. Cities, 2021, 114: 103193, doi: 10.1016/J.CITIES.2021.103193.
doi: 10.1016/J.CITIES.2021.103193 |
[42] | 李龙, 吴大放, 王芳, 等. 中国快速城市化区域生态系统服务价值预测及权衡研究--以佛山市为例[J]. 生态学报, 2020, 40(24): 9023-9036. |
[ Li Long, Wu Dafang, Wang Fang, et al. Prediction and trade off analysis of ecosystem service value in the rapidly urbanizing Foshan City of China: A case study[J]. Acta Ecologica Sinica, 2020, 40(24): 9023-9036. ] |
[1] | 孟晓, 田明华, 杜磊, 马爽. 中国农业农村现代化发展水平测度及其协调性研究[J]. 干旱区地理, 2024, 47(1): 137-146. |
[2] | 任贵秀, 刘凯. 黄河流域绿色创新的时空演化特征及影响因素分析[J]. 干旱区地理, 2024, 47(1): 158-169. |
[3] | 王冠孝,王伟,张娟娟. 乡村旅游与农村人居环境的耦合协调关系及障碍因子诊断——以山西省为例[J]. 干旱区地理, 2024, 47(1): 170-180. |
[4] | 彭娅, 王娟娟, 王珊珊, 田柳兰, 刘婕, 毋兆鹏. 生态安全视角下乌鲁木齐市土地利用冲突时空格局演变分析[J]. 干旱区地理, 2024, 47(1): 81-92. |
[5] | 王松茂, 宁文萍, 牛金兰, 安康. 黄河流域城市生态韧性时空分异及收敛研究——基于七大城市群61个城市的实证分析[J]. 干旱区地理, 2024, 47(1): 93-103. |
[6] | 周成, 赵亚玲, 张旭红, 周霖, 任敏敏. 黄河流域城市生态韧性与效率时空演化特征及协调发展分析[J]. 干旱区地理, 2023, 46(9): 1514-1523. |
[7] | 李建辉, 陈琳, 党争. 黄河流域爱国主义教育基地空间格局及影响因素研究[J]. 干旱区地理, 2023, 46(9): 1536-1544. |
[8] | 张昊, 韩增林, 乔国荣, 王辉, 王宏业, 段冶. 黄河流域城市间旅游经济联系格局及影响因素研究[J]. 干旱区地理, 2023, 46(8): 1344-1354. |
[9] | 柏荷, 明義森, 刘启航, 黄昌. 基于MGWR模型的黄河流域GPM卫星降水数据降尺度研究[J]. 干旱区地理, 2023, 46(7): 1052-1062. |
[10] | 顾朝林, 苏鹤放, 顾江, 高喆, 陈乐琳, 郭力. 论地球科学的新时代[J]. 干旱区地理, 2023, 46(7): 1176-1195. |
[11] | 苏航, 谷娇, 赵金丽. 多尺度视角下黄河流域城市信息网络空间结构演化研究[J]. 干旱区地理, 2023, 46(7): 1206-1216. |
[12] | 陈淑君,许国昌,吕志平,马铭悦,李晗羽,朱玉岩. 中国植被覆盖度时空演变及其对气候变化和城市化的响应[J]. 干旱区地理, 2023, 46(5): 742-752. |
[13] | 董洁芳, 张凯莉, 屈学书, 阮征. 黄河流域城市生态福利绩效测算及驱动因素研究[J]. 干旱区地理, 2023, 46(5): 834-845. |
[14] | 孟望生,刘华桢,张扬. 黄河流域七大城市群绿色发展效率测度及特征分析[J]. 干旱区地理, 2023, 46(5): 846-856. |
[15] | 张宁,汪子晨,杨肖,陈彤,邢飞. 新疆水资源与农业种植系统耦合协调及时空差异研究——以粮食和棉花种植系统为例[J]. 干旱区地理, 2023, 46(3): 349-359. |
|