收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2022, Vol. 45 ›› Issue (2): 346-358.doi: 10.12118/j.issn.1000–6060.2021.221

• 气候与水文 • 上一篇    下一篇

2003—2019年新疆气溶胶光学厚度时空变化特征

于志翔1,2(),李霞1(),于晓晶3,4,郑宇5,毛列尼·阿依提看1,李淑婷1,王楠1   

  1. 1.中国气象局乌鲁木齐沙漠气象研究所,新疆 乌鲁木齐 830002
    2.乌鲁木齐气象卫星地面站,新疆 乌鲁木齐 830011
    3.中国科学院大气物理研究所大气科学与地球流体力学数值模拟国家重点实验室,北京 100029
    4.中国科学院大学,北京 100049
    5.中国气象科学院大气成分和环境气象研究所,北京 100081
  • 收稿日期:2021-05-11 修回日期:2021-08-07 出版日期:2022-03-25 发布日期:2022-04-02
  • 通讯作者: 李霞
  • 作者简介:于志翔(1988-),男,高级工程师,硕士,主要从事环境气象与卫星资料分析研究工作. E-mail: 676854355@qq.com
  • 基金资助:
    中央级公益性科研院所基本科研业务费专项资金项目(IDM2020001);新疆维吾尔自治区自然基金面上项目(2020D01A99);沙漠基金(Sqj2021011);沙漠基金(Sqj2019004);国家自然科学基金资助(41575011)

Spatiotemporal variation characteristics of aerosol optical depth in Xinjiang from 2003 to 2019

YU Zhixiang1,2(),LI Xia1(),YU Xiaojing3,4,ZHENG Yu5,Manlen AYITKEN1,LI Shuting1,WANG Nan1   

  1. 1. Institute of Desert Meteorology, Chinese Meteorological Administration, Urumqi 830002, Xinjiang, China
    2. Urumqi Meteorological Satellite Ground Station, Urumqi 830011, Xinjiang, China
    3. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    4. University of the Chinese Academy of Sciences, Beijing 100049, China
    5. Institute of Atmospheric Composition and Environmental Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, China
  • Received:2021-05-11 Revised:2021-08-07 Online:2022-03-25 Published:2022-04-02
  • Contact: Xia LI

摘要:

基于2003—2019年MODIS Aqua Aerosol L2反演的新疆大气气溶胶光学厚度(Aerosol optical depth,AOD)产品,选取中国气象局大气气溶胶光学特性观测网(Chinese aerosol optical property network,CAOPNET)乌鲁木齐地面观测站点CE-318太阳光度计观测数据与MODIS AOD数据进行对比验证,通过Spearman秩相关检验,研究近17 a新疆AOD的年均值变化,并提取14个AOD高值区,以分析其逐年线性变化趋势,最后得到近17 a新疆AOD的时空变化特征。结果表明:(1) MODIS AOD与CAOPNET AOD两者具有良好的相关性,相关系数(r)为0.6381,符合期望误差(Expected error,EE)的数据占65%,MODIS AOD产品与CAOPNET AOD数据对比表明,MODIS AOD产品在新疆反演精度较高。(2) 2003—2019年新疆AOD分布地域差异明显,南疆地区均值明显高于北疆地区。第一高值区位于南疆塔里木盆地,其边缘地带年均值超过0.6,第二高值区位于天山北坡经济带,年均值超过0.3。2003—2019年,新疆除石河子和乌昌地区AOD呈现显著上升以外,大部分地区AOD年变化趋势不明显。(3) 2003—2019年新疆四季AOD差异非常显著,总体表现为春季>夏季>冬季>秋季。南疆地区四季AOD均值变化比北疆地区大。(4) 新疆AOD月均值范围为0.11~0.51,整体呈1—4月逐月增加,5—12月逐月下降的“单峰型”变化特征,4月AOD月均值达到峰值,12月AOD月均值最小。本研究结果可为新疆大气环境治理和未来污染防治提供一定的科学依据。

关键词: MODIS, 气溶胶光学厚度, 太阳光度计, 分布特征, 变化趋势

Abstract:

Aerosol optical depth (AOD) is the integration of the aerosol extinction coefficient in the vertical direction, which is an important indicator of air pollution. Based on the MODIS Aqua Aerosol L2 products, the temporal and spatial variation characteristics of AOD in Xinjiang, China from 2003 to 2019 were analyzed. First, the MODIS AOD was verified based on the Chinese Aerosol Optical Property Network AOD data, with a correlation coefficient of 0.6381 and an expected error of 65%. Then, the Spearman rank correlation test was used to analyze the annual mean variation of AOD, and 14 main AOD regions were extracted to analyze the annual linear trend. The results show that the climatology of AOD presents obvious regional characteristics in Xinjiang, with higher values over southern Xinjiang than northern Xinjiang. The AOD center located over the Tarim Basin, with mean values exceeding 0.6, is highly related to dust weather. The AOD center located along the economic belt of the north slope of the Tianshan Mountains, with an average value of about 0.3, is mainly affected by human economic activities. Therefore, natural and anthropogenic aerosols are responsible for the air pollution in Xinjiang. In terms of seasonal change, AOD is the most in spring (0.45); however, it is the least in autumn (0.15). Furthermore, the seasonal change in AOD in southern Xinjiang is more significant than in northern Xinjiang for the dust weather. The monthly mean AOD increases from January to April and decreases from May to December, with a range of 0.11-0.51. For the long-term trend, the AOD shows an increasing tendency in the economic belt of the north slope of the Tianshan Mountains and decreasing tendency in desert regions.

Key words: MODIS, aerosol optical depth (AOD), sun photometer, distribution characteristics, variation trend