收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2023, Vol. 46 ›› Issue (8): 1303-1313.doi: 10.12118/j.issn.1000-6060.2022.530

• 生物与土壤 • 上一篇    下一篇

盐结皮厚度对土壤水盐分布特征的影响

郭敏1,2,3(),李新虎1,2,3(),王弘超1,2,3,李佳琳1,3   

  1. 1.中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室,干旱区生态安全与可持续发展重点实验室,新疆 乌鲁木齐 830011
    2.新疆阿克苏绿洲农田生态系统国家野外科学观测研究站,新疆 阿克苏 843017
    3.中国科学院大学,北京 100049
  • 收稿日期:2022-10-17 修回日期:2022-11-21 出版日期:2023-08-25 发布日期:2023-09-21
  • 通讯作者: 李新虎(1981-),男,副研究员,主要从事土壤盐渍化与土壤水盐运动等方面的研究. E-mail: lixinhu@ms.xjb.ac.cn
  • 作者简介:郭敏(1997-),男,硕士研究生,主要从事土壤盐渍化等方面的研究. E-mail: guomin20@mails.ucas.ac.cn
  • 基金资助:
    国家自然科学基金项目(42277314);天山英才-青年科技拔尖人才项目(2022TSYCCX0008);中国科学院西部青年学者(2020-XBQNXZ-012)

Effect of salt crust thickness on distribution characteristics of soil water and salt

GUO Min1,2,3(),LI Xinhu1,2,3(),WANG Hongchao1,2,3,LI Jialin1,3   

  1. 1. State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. National Field Scientific Observation and Research Station of Aksu Oasis Farmland Ecosystem, Aksu 843017, Xinjiang, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-10-17 Revised:2022-11-21 Online:2023-08-25 Published:2023-09-21

摘要:

土壤盐结皮对干旱区土壤演化和生态水文过程具有重要影响,目前的研究对于盐结皮土壤的水盐分布特征涉及较少,并且未考虑盐结皮厚度的影响,导致研究结果存在较大差异。因此,通过室内模拟试验,设置4种初始盐分浓度(0 g·L-1、10 g·L-1、150 g·L-1和250 g·L-1)以获取不同盐结皮厚度(4.5 mm、6.6 mm和7.3 mm),采用部分重复逐步退出的方法对比分析土壤剖面水盐的动态变化。结果表明:(1)对比无盐处理,含盐处理盐结皮越厚,土壤剖面含水量越大,含盐量变化幅度越小。(2)试验结束时,4.5 mm厚度盐结皮土壤含水量分布特征和无盐处理相似,6.6 mm和7.3 mm厚度盐结皮土壤剖面含水量显著大于无盐处理(P<0.05)。(3)试验结束时4.5 mm、6.6 mm和7.3 mm厚度盐结皮土壤剖面最小含盐量相比初始含盐量分别减小了90.5%、46.3%和32.1%。研究结果验证了盐结皮厚度会对土壤水盐分布产生较大影响,因此建议未来对于盐结皮土壤水盐分布特征的相关研究需综合考虑盐结皮厚度的影响。

关键词: 盐结皮厚度, 水盐分布特征, 蒸发锋, HYDRUS-1D模型

Abstract:

Soil salt crust has an important impact on soil evolution and ecohydrological processes in arid areas. There are few recent studies on water and salt distribution characteristics in salt-crust soils, and the influence of salt-crust thickness is not considered, leading to great differences in research results. Therefore, in this paper, four initial salt concentration treatments (0 g·L−1, 10 g·L−1, 150 g·L−1, and 250 g·L−1) were set to obtain different salt-crust thicknesses (4.5 mm, 6.6 mm, 7.3 mm) through laboratory simulation tests, and the soil-profile dynamics of water and salt were compared and analyzed using a partial repeated stepwise withdrawal method. The results were as follows: (1) Compared with the non-salt treatment, the thicker the salt crust, the larger the soil-profile water content, and the smaller the salt-content variation range. (2) At the end of the experiment, the water content distribution characteristics of the 4.5 mm salt-crust soil were similar to those of the unsalted treatment, and the water contents of the 6.6 mm and 7.3 mm salt-crust soils were significantly higher than that of the unsalted treatment (P<0.05). (3) At the end of the test, the minimum salt contents of the 4.5 mm, 6.6 mm, and 7.3 mm salt-crust soils decreased by 90.5%, 46.3%, and 32.1%, respectively, compared with their initial salt contents. The results confirm that salt-crust thickness has a great influence on the distribution of soil water and salt. Therefore, it is suggested that the influence of salt-crust thickness should be considered comprehensively in future research on distribution characteristics of water and salt.

Key words: salt crust thickness, distribution characteristics of water and salt, evaporation front, HYDRUS-1D model