干旱区地理 ›› 2025, Vol. 48 ›› Issue (12): 2111-2121.doi: 10.12118/j.issn.1000-6060.2025.040 cstr: 32274.14.ALG2025040
陈明丽1(
), 麦麦提吐尔逊·艾则孜1,2(
), 王丽灵1, 胡永龙1
收稿日期:2025-01-19
修回日期:2025-03-10
出版日期:2025-12-25
发布日期:2025-12-30
通讯作者:
麦麦提吐尔逊·艾则孜(1981-),男,博士,教授,主要从事干旱区环境演变研究. E-mail: oasiseco@xjnu.edu.cn作者简介:陈明丽(2000-),女,硕士研究生,主要从事重金属污染研究. E-mail: 18742940749@163.com
基金资助:
CHEN Mingli1(
), Maimaitituerxun AIZEZI1,2(
), WANG Liling1, HU Yonglong1
Received:2025-01-19
Revised:2025-03-10
Published:2025-12-25
Online:2025-12-30
摘要:
干旱区小微湿地对干旱区生态系统稳定性以及人类生活、生存起到关键作用。从新疆博斯腾湖流域采集86个代表性小微湿地水样,测定其中Cu、Zn、Pb、Cd、Hg及As 6种重金属元素的含量,采用内梅罗综合污染指数、生态风险指数和US EPA健康风险评估模型,研究了小微湿地重金属污染及潜在生态与健康风险。结果表明:(1) 研究区小微湿地中各重金属含量平均值均低于《GB 3838-2002地表水环境质量标准》中Ⅲ类标准限值。(2) 小微湿地中的6种重金属的单因子污染指数和综合污染指数均呈现无污染态势。(3) 小微湿地中重金属的单因子生态风险指数与综合生态风险指数均呈现轻微生态风险。(4) 潜在健康风险评估结果表明,小微湿地中6种重金属产生的潜在非致癌健康风险均在可接受范围内,Cd与As产生的潜在致癌健康风险属于可接受风险水平。小微湿地中6种重金属对成人的非致癌和致癌健康风险均高于儿童。整体上,Hg是研究区小微湿地中最主要的污染及生态风险因子,As是最主要的潜在健康风险因子。研究结果可为干旱区水环境安全提供科学依据。
陈明丽, 麦麦提吐尔逊·艾则孜, 王丽灵, 胡永龙. 博斯腾湖流域小微湿地重金属污染及潜在风险评估[J]. 干旱区地理, 2025, 48(12): 2111-2121.
CHEN Mingli, Maimaitituerxun AIZEZI, WANG Liling, HU Yonglong. Pollution and potential risk assessment of heavy metals in small wetlands in the Bosten Lake Basin[J]. Arid Land Geography, 2025, 48(12): 2111-2121.
表4
蒙特卡罗健康风险模型参数取值和分布"
| 参数 | 单位 | 分布类型 | 成人取值 | 儿童取值 | 参考文献 |
|---|---|---|---|---|---|
| IR | L·d-1 | 正态分布 | 2(SD=0.15) | 0.64(SD=0.15) | [ |
| EF | d·a-1 | 三角分布 | 350(180~364) | 350(180~364) | [ |
| ED | a | 单点分布 | 24 | 6 | [ |
| BW | kg | 正态分布 | 65(SD=0.3) | 20(SD=0.3) | [ |
| AT非致癌风险 | d | 单点分布 | 8760 | 2190 | [ |
| AT致癌风险 | d | 单点分布 | 25500 | 25500 | [ |
| SA | cm2 | 对数正态 | 18000 | 6600 | [ |
| ET | h | 单点分布 | 1 | 0.58 | [ |
表5
研究区小微湿地重金属含量统计特征"
| 元素 | 最大值/μg·L-1 | 最小值/μg·L-1 | 平均值/μg·L-1 | 标准差/μg·L-1 | 变异系数 | 峰度系数 | 偏度系数 | 标准值*/μg·L-1 | 超标率/% |
|---|---|---|---|---|---|---|---|---|---|
| Cu | 57.30 | 0.08 | 15.49 | 9.82 | 0.63 | 3.73 | 1.74 | 1000 | 0 |
| Zn | 297.00 | 0.67 | 40.54 | 31.47 | 0.78 | 52.72 | 6.49 | 1000 | 0 |
| Pb | 12.70 | 0.09 | 2.21 | 1.95 | 0.88 | 14.08 | 3.42 | 50 | 0 |
| Cd | 0.80 | 0.05 | 0.06 | 0.08 | 1.33 | 81.77 | 8.95 | 5 | 0 |
| Hg | 0.57 | 0.04 | 0.08 | 0.08 | 1.00 | 16.88 | 3.32 | 0.1 | 31 |
| As | 13.30 | 0.30 | 2.36 | 2.38 | 1.01 | 7.20 | 7.20 | 50 | 0 |
| [1] | Yu B W, Zang Y G, Wu C S, et al. Spatiotemporal dynamics of wetlands and their future multi-scenario simulation in the Yellow River Delta, China[J]. Journal of Environmental Management, 2024, 353: 120193, doi: 10.1016/j.jenvman.2024.120193. |
| [2] | Kim B, Lee J, Park J. Role of small wetlands on the regime shift of ecological network in a wetlandscape[J]. Environmental Research Communications, 2022, 4, 041006, doi: 10.1088/2515-7620/ac6859. |
| [3] | Zhang J M, Chu L, Zhang Z X, et al. Evolution of small and micro wetlands and their driving factors in the Yangtze River Delta: A case study of Wuxi area[J]. Remote Sensing, 2023, 15(4): 1152, doi: 10.3390/RS15041152. |
| [4] |
Szpakowska B, Swierk D, Dudzinska A, et al. The influence of land use in the catchment area of small waterbodies on the quality of water and plant species composition[J]. Scientific Reports, 2022, 12(1): 7265-7279.
doi: 10.1038/s41598-022-11115-w pmid: 35508674 |
| [5] |
Zhang Z S, Craft C B, Xue Z S, et al. Regulating effects of climate, net primary productivity, and nitrogen on carbon sequestration rates in temperate wetlands, northeast China[J]. Ecological Indicators, 2016, 70: 114-124.
doi: 10.1016/j.ecolind.2016.05.041 |
| [6] | Saeed T. Pollutant removal performance of the bioenergy-producing constructed wetlands under unstable loading conditions: Carbon and metallic electrode[J]. Journal of Water Process Engineering, 2024, 58, 104866, doi: 10.1016/j.jwpe.2024.104866. |
| [7] | 吴燕锋, 章光新. 流域湿地水文调蓄功能研究综述[J]. 水科学进展, 2021, 32(3): 458-469. |
| [Wu Yanfeng, Zhang Guangxin. A review of hydrological regulation functions of watershed wetlands[J]. Advances in Water Science, 2021, 32(3): 458-469.] | |
| [8] | 崔丽娟, 雷茵茹, 张曼胤, 等. 小微湿地研究综述: 定义、类型及生态系统服务[J]. 生态学报, 2021, 41(5): 2077-2085. |
| [Cui Lijuan, Lei Yinru, Zhang Manyin, et al. Review on small wetlands: Definition, typology and ecological services[J]. Acta Ecologica Sinica, 2021, 41(5): 2077-2085.] | |
| [9] | 凌越, 邹雨函, 朱涛, 等. 2009年、2015年和2020年烟台市小微湿地的分布、数量和面积[J]. 湿地科学, 2022, 20(4): 548-553. |
| [Li Yue, Zou Yuhan, Zhu Tao, et al. Distribution, quantity and areas of small and micro wetlands in Yantai City in 2009, 2015 and 2020[J]. Wetland Science, 2022, 20(4): 548-553.] | |
| [10] | 李胜, 高祥, 董斌, 等. 合肥市41处小微湿地生态状况评价[J]. 湿地科学, 2022, 20(4): 360-365. |
| [Li Sheng, Gao Xiang, Dong Bin, et al. Evaluation of ecological situations of 41 small and micro-sized wetlands in Hefei City[J]. Wetland Science, 2022, 20(4): 360-365.] | |
| [11] | Chen L W, Yang Y T, Ding M J, et al. Scale effects of multi-medium heavy metals in response to landscape indices in the Yuan River, China[J]. Journal of Cleaner Production, 2022, 373, 133784, doi: 10.1016/j.jclepro.2022.133784. |
| [12] | Tiwari A K, Maio M D, Singh K, et al. Evaluation of surface water quality by using GIS and a heavy metal pollution index (HPI) model in acoal mining area, India[J]. Reviews of Environmental Contamination and Toxicology, 2015, 95: 304-310. |
| [13] | 郭玉文. 浅谈河流重金属污染对水生动植物群落的影响[J]. 皮革制作与环保科技, 2024, 5(12): 110-112. |
| [Guo Yuwen. Discussion on the impact of heavy metal pollution in rivers on aquatic animal and plant communities[J]. Leather Manufacture and Environmental Technology, 2024, 5(12): 110-112.] | |
| [14] | 刘娣, 苏超, 解榕, 等. 煤炭产业园区重金属污染对土壤真菌群落特征的影响[J]. 生态学杂志, 2024, 43(12): 3537-3544. |
|
[Liu Di, Su Chao, Xie Rong, et al. Influences of heavy metal contamination on soil fungal communities in a typical coal-based industrial park[J]. Chinese Journal of Ecology, 2024, 43(12): 3537-3544.]
doi: 10.13292/j.1000-4890.202412.043 |
|
| [15] | 刘静, 李树先, 朱江, 等. 浅谈几种重金属元素对人体的危害及其预防措施[J]. 中国资源综合利用, 2018, 36(3): 182-184. |
| [Liu Jing, Li Shuxian, Zhu Jiang, et al. Discussion on the harm to human body by several kinds of heavy metal elements and preventive measures[J]. China Resources Comprehensive Utilization, 2018, 36(3): 182-184.] | |
| [16] | Githaiga K B, Njuguna S M, Gituru R W, et al. Water quality assessment, multivariate analysis and human health risks of heavy metals in eight major lakes in Kenya[J]. Journal of Environmental Management, 2021, 297: 113410, doi: 10.1016/j.jenvman.2021.113410. |
| [17] | 李国莲, 张玉, 王洋, 等. 瓦埠湖水体和沉积物中重金属分布特征、风险评估及来源解析[J]. 环境科学, 2024, 45(12): 7111-7122. |
| [Li Guolian, Zhang Yu, Wang Yang, et al. Enrichment characteristics, risk evaluation and source apportionment of heavy metals in Wabu Lake of Yangtze River to Huaihe River Water Diversion Project[J]. Environmental Science, 2024, 45(12): 7111-7122.] | |
| [18] |
Anyanwu D E, Nwachukwu D E. Heavy metal content and health risk assessment of a south-eastern Nigeria River[J]. Applied Water Science, 2020, 10(9): 63-67.
doi: 10.1007/s13201-020-1146-y |
| [19] | Liu X Z, Sheng Y Q, Liu Q Q, et al. Suspended particulate matter affects the distribution and migration of heavy metals in the Yellow River[J]. Science of the Total Environment, 2024, 912: 169537, doi: 10.1016/j.scitotenv.2023.169537. |
| [20] | 张瑞溪, 刘娅君, 罗泳楠, 等. 重庆市长寿湖水库表层水体重金属时空分布及风险评价[J]. 环境科学, 2024, 45(3): 1428-1438. |
|
[Zhang Ruixi, Liu Yajun, Luo Yongnan, et al. Spatial and temporal distribution and risk assessment of heavy metals in surface water of Changshou Lake Reservoir, Chongqing[J]. Environmental Science, 2024, 45(3): 1428-1438.]
doi: 10.1021/es103757c |
|
| [21] | 葛勤, 张瀚月, 米振华, 等. 大同盆地西南区地下水重金属来源解析及健康风险评价[J]. 环境科学, 2025, 46(1): 239-252. |
| [Ge Qin, Zhang Hanyue, Mi Zhenhua, et al. Source and health risk assessment of heavy metals in groundwater of Datong Basin[J]. Environmental Science, 2025, 46(1): 239-252.] | |
| [22] | Nemerow N L. Stream, lake, estuary, and ocean pollution[M]. Van Nostrand Reinhold Publishing Co.: New York, USA, 1985. |
| [23] |
Tomlinson D L, Wilson J G, Harris C R, et al. Problems in the assessment of heavy metals levels in estuaries and the formation of pollution index[J]. Helgoländer Meeresuntersuchungen, 1980, 33(1-4): 566-575.
doi: 10.1007/BF02414780 |
| [24] |
Håkanson L. An ecological risk index for aquatic pollution control: A sedimentological approach[J]. Water Research, 1980, 14(8): 975-100.
doi: 10.1016/0043-1354(80)90143-8 |
| [25] |
Yang S Y, Zhao J, Chang S X, et al. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: A synthesis[J]. Environment International, 2019, 128: 165-174.
doi: S0160-4120(19)30177-1 pmid: 31055203 |
| [26] | 马杰, 葛淼, 王胜蓝, 等. 基于源导向的农用地土壤重金属健康风险评估及优先控制因子分析[J]. 环境科学, 2024, 45(1): 396-406. |
| [Ma Jie, Ge Miao, Wang Shenglan, et al. Health risk assessment and priority control factors analysis of heavy metals in agricultural soils based on source-oriented[J]. Environmental Science, 2024, 45(1): 396-406.] | |
| [27] | Mamattursun E, Nazupar S, Zhong Q, et al. Distribution, pollution levels, and health risk assessment of heavy metals in groundwater in the main pepper production area of China[J]. Open Geosciences, 2023, 15(1): 20220491, doi: 10.1515/GEO-2022-0491. |
| [28] |
麦麦提吐尔逊·艾则孜, 阿吉古丽·马木提, 艾尼瓦尔·买买提, 等. 博斯腾湖流域绿洲农田土壤重金属污染及潜在生态风险评价[J]. 地理学报, 2017, 72(9): 1680-1694.
doi: 10.11821/dlxb201709012 |
|
[Aizezi Maimaitituerxun, Mamuti Ajiguli, Maimaiti Ainiwaer, et al. Assessment of heavy metal pollution and its potential ecological risks of farmland soils of oasis in Bosten Lake Basin[J]. Acta Geographica Sinica, 2017, 72(9): 1680-1694.]
doi: 10.11821/dlxb201709012 |
|
| [29] | 艾提业古丽·热西提, 麦麦提吐尔逊·艾则孜, 王维维, 等. 博斯腾湖流域地下水重金属污染的人体健康风险评估[J]. 生态毒理学报, 2019, 14(2): 251-259. |
| [Rexiti Aitiyeguli, Aizezi Maimaitituerxun, Wang Weiwei, et al. The human health risk assessment of heavy metal pollution of groundwater in Bosten Lake Basin[J]. Asian Journal of Ecotoxicology, 2019, 14(2): 251-259.] | |
| [30] | 王凯, 迪丽努尔·阿吉, 李平平, 等. 博斯腾湖湿地沉积物重金属污染特征及风险评价[J]. 湖泊科学, 2025, 37(3): 860-873. |
|
[Wang Kai, Aji Dilinuer, Li Pingping, et al. Characterization and risk assessment of heavy metal pollution in wetland sediments of Lake Bosten[J]. Journal of Lake Sciences, 2025, 37(3): 860-873.]
doi: 10.18307/2025.0324 |
|
| [31] |
亚夏尔·艾斯克尔, 玉素甫江·如素力. 基于多端元解混模型的博斯腾湖区域植被和水域时空变化特征及趋势分析[J]. 干旱区地理, 2023, 46(10): 1622-1631.
doi: 10.12118/j.issn.1000-6060.2023.024 |
|
[Aisikeer Yaxiaer, Rusuli Yusufjiang. Spatiotemporal variation characteristics and trend analysis of vegetation and water area in the Bosten Lake based on multiple endmember spectral mixture analysis model[J]. Arid Land Geography, 2023, 46(10): 1622-1631.]
doi: 10.12118/j.issn.1000-6060.2023.024 |
|
| [32] | GB/3838-2002. 中华人民共和国国家标准: 地表水环境质量标准[S]. 北京: 中国环境出版社, 2002. |
| [GB/3838-2002. National Standard of the People’s Republic of China: Environmental quality standards for surface water[S]. Beijing: China Environment Press, 2002.] | |
| [33] | Chai L, Wang Y H, Wang X, et al. Pollution characteristics, spatial distributions, and source apportionment of heavy metals in cultivated soil in Lanzhou, China[J]. Ecological Indicators, 2021, 125: 107507, doi: 10.1016/j.ecolind.2021.107507. |
| [34] | Chen Z, Zhao Y, Liang N, et al. Pollution, cumulative ecological risk and source apportionment of heavy metals in water bodies and river sediments near the Luanchuan molybdenum mining area in the Xiaoqinling Mountains, China[J]. Marine Pollution Bulletin, 2024, 205: 116621, doi: 10.1016/j.marpolbul.2024.116621. |
| [35] | 董纯, 张东亚, 刘宏高, 等. 涨渡湖水系沉积物重金属分布及生态风险浅析[J]. 水生态学杂志, 2024, 45(5): 178-185. |
| [Dong Chun, Zhang Dongya, Liu Honggao, et al. Distribution and ecological risk of heavy metals in sediments of the Zhangdu Lake Water System[J]. Journal of Hydroecology, 2024, 45(5): 178-185.] | |
| [36] | US EPA (US Environmental Protection Agency). Risk assessment guidance for superfund volume Ⅰ: Human health evaluation manual (Part E, supplemental guidance for dermal risk assessment) final[R]. Washington: US EPM, 2004. |
| [37] | 陈莲, 邹子航, 张培珍, 等. 基于源导向和蒙特卡洛模型的广东省某城市土壤重金属健康风险评估[J]. 环境科学, 2024, 45(5): 2983-2994. |
| [Chen Lian, Zou Zihang, Zhang Peizhen, et al. Health risk assessment of heavy metals in soils of a city in Guangdong Province based on source oriented and Monte Carlo models[J]. Environmental Science, 2024, 45(5): 2983-2994.] | |
| [38] | Maria L, Iqra N, Mubeen A, et al. Human health risk assessment of drinking water using heavy metal pollution index: A GIS-based investigation in mega city[J]. Applied Water Science, 2024, 15(1): 12, doi: 10.1007/S13201-024-02341-W. |
| [39] |
Luo Y H, Wang N, Liu Z L, et al. Characteristics and risk assessment of potentially toxic elements pollution in river water and sediment in typical gold mining areas of northwest China[J]. Scientific Reports, 2024, 14(1): 12715, doi: 10.1038/s41598-024-63723-3.
pmid: 38830984 |
| [40] | Huang J L, Wu Y Y, Sun J X, et al. Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with positive matrix factorization model[J]. Journal of Hazardous Materials, 2021, 415(5): 125629, doi: 10.1016/j.jhazmat.2021.125629. |
| [41] | Chen R H, Chen H Y, Song L T, et al. Characterization and source apportionment of heavy metals in the sediments of Lake Tai (China) and its surrounding soils[J]. Science of the Total Environment, 2019, 694, 133819, doi: 10.1016/j.scitotenv.2019.133819. |
| [42] | US EPA (U.S. Environmental Protection Agency). Guiding principles for Monte Carlo analysis[EB/OL]. [1977-03]. http://www.epa.gov/risk/guiding-principles-monte-carlo-analysis. |
| [43] | Wang L L, Mamattursun E, Hu Y L, et al. Health risk assessment of heavy metal(loid)s in the overlying water of small wetlands based on Monte Carlo simulation[J]. Toxics, 2024, 12(7): 488, doi: 10.3390/toxics12070488. |
| [44] |
Pena-Fernandez A, Gonzalez-Munoz M, Lobo-Bedmar M. Establishing the importance of human health risk assessment for metals and metalloids in urban environments[J]. Environment International, 2014, 72: 176-185.
doi: 10.1016/j.envint.2014.04.007 |
| [45] |
Li Y T, Xue J B, Chen J Q, et al. Increasing anthropogenic mercury pollution over the last 200 years revealed by Lagoonal sediments from Hainan Island, south China[J]. Chinese Geographical Science, 2023, 33(6): 1127-1140.
doi: 10.1007/s11769-023-1388-3 |
| [46] | 马丽钧, 周浪, 宋波, 等. 贵州省旱地土壤Hg污染状况与玉米安全生产评估[J]. 环境科学, 2023, 44(5): 2868-2878. |
| [Ma Lijun, Zhou Lang, Song Bo, et al. Mercury pollution in dryland soil and evaluation of maize safety production in Guizhou Province[J]. Environmental Science, 2023, 44(5): 2868-2878.] | |
| [47] | Muyassar M, Mamattursun E, Wang L L, et al. Pollution and ecological risk assessment of metal elements in groundwater in the Ibinur Lake Basin of NW China[J]. Water, 2023, 15, 4071, doi: 10.3390/w15234071. |
| [48] | 雷米, 周金龙, 周殷竹, 等. 天山北麓中段绿洲带高砷地下水中砷的迁移转化规律[J]. 地球科学, 2024, 49(1): 253-270. |
| [Lei Mi, Zhou Jinlong, Zhou Yinzhu, et al. Migration and transformation mechanism of high arsenic groundwater in oasis belt in the middle part of northern piedmont of Tianshan Mountain[J]. Earth Science, 2024, 49(1): 253-270.] | |
| [49] | 晁博, 罗艳丽, 王翔. 新疆奎屯地区高砷地下水稳定碳同位素特征及其指示意义[J]. 环境化学, 2024, 43(3): 951-960. |
| [Chao Bo, Luo Yanli, Wang Xiang. Stable carbon isotope signatures of high arsenic groundwater and their indicative significance in in Kuitun area of Xinjiang[J]. Environmental Chemistry, 2024, 43(3): 951-960.] | |
| [50] |
康文辉, 周殷竹, 孙英, 等. 新疆玛纳斯河流域地下水砷氟分布及共富集成因[J]. 干旱区研究, 2023, 40(9): 1425-1437.
doi: 10.13866/j.azr.2023.09.06 |
|
[Kang Wenhui, Zhou Yinzhu, Sun Ying, et al. Distribution and coenrichment of arsenic and fluorine in the groundwater of the Manas River Basin in Xinjiang[J]. Arid Zone Research, 2023, 40(9): 1425-1437.]
doi: 10.13866/j.azr.2023.09.06 |
|
| [51] |
Mamattursun E, Anwar M, Ajigul M, et al. A human health risk assessment of heavy metals in agricultural soils of Yanqi Basin, Silk Road Economic Belt, China[J]. Human and Ecological Risk Assessment, 2018, 24(5): 1352-1366.
doi: 10.1080/10807039.2017.1412818 |
| [52] | Lyon. Monographs on the evaluation of carcinogenic risks to humans[R]. France: IARC, 2014. |
| [1] | 魏疆, 赵彩欣, 王国华, 赵丽莉. 乌鲁木齐市城区大气PM2.5中水溶性离子组分特征及来源解析[J]. 干旱区地理, 2025, 48(4): 623-631. |
| [2] | 柴明辰, 徐国杰, 甄钟秀, 银燕, 郑博华, 陈魁, 李斌, 李圆圆. 中天山PM2.5中重金属和多环芳烃污染特征、来源及健康风险评价[J]. 干旱区地理, 2025, 48(3): 391-404. |
| [3] | 王思予, 周宏飞, 闫英杰, 杨松, 苏媛. 夏季蒙古国西部地表水水质空间分布特征及评价[J]. 干旱区地理, 2025, 48(10): 1783-1792. |
| [4] | 焦美玲, 韩晶, 曹彦超, 王娟, 秦拓, 贺涛. 庆阳市空气污染及气象因子影响特征分析[J]. 干旱区地理, 2024, 47(6): 932-941. |
| [5] | 翟玉鑫, 张飞云, 马丽娜. 基于三生空间的博斯腾湖流域生境质量时空演变及预估[J]. 干旱区地理, 2023, 46(11): 1792-1802. |
| [6] | 梁樑, 郭晓淞, 陈汉杰, 徐皓帆, 周衍波, 谢邵文, 杨芬, 韦朝阳. 乌鲁木齐市核心城区绿地土壤重金属累积特征及生态风险[J]. 干旱区地理, 2023, 46(11): 1868-1878. |
| [7] | 李淑婷,李霞,毛列尼·阿依提看,钟玉婷,王慧琴. 2017—2019年中天山北坡城市群大气污染及污染天气类型特征[J]. 干旱区地理, 2022, 45(4): 1082-1092. |
| [8] | 胡淑兰,胡琳,程路,林扬,路岑之. 陕西关中重污染天气低空流场的分型研究[J]. 干旱区地理, 2022, 45(1): 122-130. |
| [9] | 杨维鸽, 勾萌萌, 叶媛媛, 李美兰, 龚伟. 尾矿区居民的环境污染感知研究[J]. 干旱区地理, 2020, 43(4): 1108-1116. |
| [10] | 刘全諹, 齐明亮, 马啸宙, 巩娟霄. 基于遥感和 GIS 的洮河流域面源污染流域尺度模拟及防治对策研究 [J]. 干旱区地理, 2020, 43(3): 706-714. |
| [11] | 刘清, 杨永春, 刘海洋. 中国366个城市空气污染综合程度的时空演变特征分析[J]. 干旱区地理, 2020, 43(3): 820-830. |
| [12] | 李振杰, 金莉莉, 何清, 缪启龙, 买买提艾力·买买提依明. 乌鲁木齐大气混合层厚度和稳定度与大气污染的关系[J]. 干旱区地理, 2019, 42(3): 478-491. |
| [13] | 帕丽达·牙合甫, 杨鹏月. 乌鲁木齐市近几年大气颗粒物中重金属的浓度特征[J]. 干旱区地理, 2019, 42(3): 492-498. |
| [14] | 田丰收, 刘新平, 原伟鹏. 新疆和田地区耕地面源污染生态风险评价[J]. 干旱区地理, 2019, 42(2): 295-304. |
| [15] | 钟巧,焦黎,李稚,焦伟,陈亚宁. 博斯腾湖流域潜在蒸散发时空演变及归因分析[J]. 干旱区地理, 2019, 42(1): 103-112. |
|
||
