[1] |
余平辉, 马锦龙, 廖建波, 等. 柴达木盆地昆北地区路乐河组/下干柴沟组泥岩地层地球化学特征及古环境意义[J]. 干旱区地理, 2020, 43(3): 679-686.
|
|
[Yu Pinghui, Ma Jinlong, Liao Jianbo, et al. Geochemistry and paleoenvironment significance of Lulehe formation/Xiaganchaigou formation located in the north area of Qaidam Basin[J]. Arid Land Geography, 2020, 43(3): 679-686.]
|
[2] |
丁旋. 十五万年以来的古气候及其研究方法综述[J]. 地质科技情报, 1998, 17(2): 40-45.
|
|
[Ding Xuan. Paleoclmate during the last 150000 years and its study methods[J]. Geological Science and Technology Information, 1998, 17(2): 40-45.]
|
[3] |
Ding Z L, Yu Z W, Rutter N W, et al. Towards an orbital time scale for Chinese loess deposits[J]. Quaternary Science Reviews, 1994, 13(1): 39-70.
doi: 10.1016/0277-3791(94)90124-4
|
[4] |
Zhou L P, Oldfield F, Wintle A G, et al. Partly pedogenic origin of magnetic variations in Chinese loess[J]. Nature, 1990, 346(6286): 737-739.
doi: 10.1038/346737a0
|
[5] |
An Z S, Huang Y S, Liu W G, et al. Multiple expansions of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation[J]. Geology, 2005, 33(9): 705-708.
doi: 10.1130/G21423.1
|
[6] |
Ning Y F, Liu W G, An Z S, et al. A 130-ka reconstruction of precipitation on the Chinese Loess Plateau from organic carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 270(1): 59-63.
doi: 10.1016/j.palaeo.2008.08.015
|
[7] |
秦锋, 赵艳. 基于孢粉组合定量重建古气候的方法在中国的运用及思考[J]. 第四纪研究, 2013, 33(6): 1054-1068.
|
|
[Qin Feng, Zhao Yan. Methods of quantitative climate reconstruction based on palynological data and their applications in China[J]. Quaternary Sciences, 2013, 33(6): 1054-1068.]
|
[8] |
Wang W, Ma Y Z, Feng Z D, et al. A prolonged dry mid-Holocene climate revealed by pollen and diatom records from Lake Ugii Nuur in central Mongolia[J]. Quaternary International, 2011, 229(1-2): 74-83.
doi: 10.1016/j.quaint.2010.06.005
|
[9] |
谢树成, 黄咸雨, 杨欢, 等. 示踪全球环境变化的微生物代用指标[J]. 第四纪研究, 2013, 33(1): 1-19.
|
|
[Xie Shucheng, Huang Xianyu, Yang Huan, et al. An overview on microbial proxies for the reconstruction of past global environmental change[J]. Quaternary Sciences, 2013, 33(1): 1-19.]
|
[10] |
葛黄敏, 张传伦. 中国边缘海环境中GDGT的研究进展[J]. 中国科学: 地球科学, 2016, 46(4): 473-488.
|
|
[Ge Huangmin, Zhang Chuanlun. Research progress of GDGT in China’s marginal sea environment[J]. Scientia Sinica (Terrae), 2016, 46(4): 473-488.]
|
[11] |
Feng Z D, Wang L X, Ji Y H, et al. Climatic dependency of soil organic carbon isotopic composition along the S-N transect from 34°N to 52°N in central-east Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 257(3): 335-343.
doi: 10.1016/j.palaeo.2007.10.026
|
[12] |
Galy V, Francois L, France-Lanord C, et al. C4 plants decline in the Himalayan Basin since the Last Glacial Maximum[J]. Quaternary Science Reviews, 2008, 27(13): 1396-1409.
doi: 10.1016/j.quascirev.2008.04.005
|
[13] |
Rao Z G, Chen F H, Zhang X, et al. Spatial and temporal variations of C3/C4 relative abundance in global terrestrial ecosystem since the Last Glacial and its possible driving mechanisms[J]. Chinese Science Bulletin, 2012, 57(31): 4024-4035.
doi: 10.1007/s11434-012-5233-9
|
[14] |
冉敏, 杨奇丽, 张晓森. 中亚哈萨克斯坦西部过去-3000年以来有机碳同位素变化及其意义[J]. 干旱区资源与环境, 2013, 27(9): 60-65.
|
|
[Ran Min, Yang Qili, Zhang Xiaosen. The organic carbon isotope variation and its paleoclimate indicator in western Kazakhstan during past 30000 years[J]. Journal of Arid Land Resources and Environment, 2013, 27(9): 60-65.]
|
[15] |
Ran M, Feng Z D. Variation in carbon isotopic composition over the past ca. 46000 yr in the loess-paleosol sequence in central Kazakhstan and paleoclimatic significance[J]. Organic Geochemistry, 2014, 73: 47-55.
doi: 10.1016/j.orggeochem.2014.05.006
|
[16] |
Deities P. The isotopic composition of reduced organic carbon[J]. Handbook of Environmental Isotope Geochemistry, 1980, 1: 329-406.
|
[17] |
O’Leary M. Carbon isotopic fractionation in plants[J]. Phytochemistry, 1981, 20(4): 553-567.
doi: 10.1016/0031-9422(81)85134-5
|
[18] |
Farquhar G D, Ehleringer A J R, Hubick K T. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40(1): 503-537.
doi: 10.1146/annurev.pp.40.060189.002443
|
[19] |
Sage R, Wedin D. The biogeography of C4photosynthesis: Patterns and controlling factors[M]. San Diego: Academic Press, 1999: 313-373.
|
[20] |
Rao Z G, Guo W K, Cao J T, et al. Relationship between the stable carbon isotopic composition of modern plants and surface soils and climate: A global review[J]. Earth-Science Reviews, 2017, 165: 110-119.
doi: 10.1016/j.earscirev.2016.12.007
|
[21] |
Stevenson B A, Kelly E F, Mcdonald E V, et al. The stable carbon isotope composition of soil organic carbon and pedogenic carbonates along a bioclimatic gradient in the Palouse region, Washington State, USA[J]. Geoderma, 2005, 124(1-2): 37-47.
doi: 10.1016/j.geoderma.2004.03.006
|
[22] |
王丽霞, 汪卫国, 李心清, 等. 中国北方干旱半干旱区表土的有机质碳同位素、磁化率与年降水量的关系[J]. 干旱区地理, 2005, 28(3): 311-315.
|
|
[Wang Lixia, Wang Weiguo, Li Xinqing, et al. Correlation between the carbon isotope of organic matter and magnetic susceptibility in topsoil and the annual precipitation in arid and semiarid regions in north China[J]. Arid Land Geography, 2005, 28(3): 311-315.]
|
[23] |
Rao Z G, Jia G D, Zhu Z Y, et al. Comparison of the carbon isotope composition of total organic carbon and long-chain n-alkanes from surface soils in eastern China and their significance[J]. Chinese Science Bulletin, 2008, 53(24): 3921-3927.
|
[24] |
Zhang D L, Yang Y P, Ran M. Variations of surface soil δ13Corg in the different climatic regions of China and paleoclimatic implication[J]. Quaternary International, 2020, 536: 92-102.
doi: 10.1016/j.quaint.2019.12.015
|
[25] |
吕厚远, 顾兆炎, 吴乃琴, 等. 海拔高度的变化对青藏高原表土δ13Corg的影响[J]. 第四纪研究, 2001, 21(5): 399-406.
|
|
[Lü Houyuan, Gu Zhaoyan, Wu Naiqin, et al. Effect of altitude on the organic carbon-isotope composition of modern surface soils from Qinghai-Xizang Plateau[J]. Quaternary Sciences, 2001, 21(5): 399-406.]
|
[26] |
Wang Q, Wang X, Wei H T, et al. Climatic significance of the stable carbon isotopic composition of surface soils in northern Iran and its application to an Early Pleistocene loess section[J]. Organic Geochemistry, 2019, 127: 104-114.
doi: 10.1016/j.orggeochem.2018.11.011
|
[27] |
Rao Z G, Huang C, Xie L H, et al. Long-term summer warming trend during the Holocene in Central Asia indicated by alpine peat α-cellulose δ13C record[J]. Quaternary Science Reviews, 2019, 203: 56-67.
doi: 10.1016/j.quascirev.2018.11.010
|
[28] |
黄丹妮, 张震, 张莎莎, 等. 东帕米尔高原冰川运动特征分析[J]. 干旱区地理, 2021, 44(1): 131-140.
|
|
[Huang Danni, Zhang Zhen, Zhang Shasha, et al. Characteristics of glacier movement in the eastern Pamir Plateau[J]. Arid Land Geography, 2021, 44(1): 131-140.]
|
[29] |
毛东雷, 蔡富艳, 李新国, 等. 塔克拉玛干沙漠南缘策勒流沙前缘与绿洲内部近地面逆温逆湿特征研究[J]. 干旱区地理, 2019, 42(5): 976-985.
|
|
[Mao Donglei, Cai Fuyan, Li Xinguo, et al. Characteristics of air temperature inversion and relative humidity inversion between the near ground surface in the oasis and the leading edge of shifting sandy land of Cele in the southern margin of Taklimakan Desert[J]. Arid Land Geography, 2019, 42(5): 976-985.]
|
[30] |
王玉涛, 戴志刚, 杨世杰, 等. 东帕米尔高原盘羊分布与栖息地植被覆盖时空变化[J]. 生态学报, 2016, 36(1): 209-217.
|
|
[Wang Yutao, Dai Zhigang, Yang Shijie, et al. The distribution of marco polo sheep and their habitat vegetation dynamics in east Pamir[J]. Acta Ecologica Sinica, 2016, 36(1): 209-217.]
|
[31] |
孙红叶, 张希明, 李利, 等. 塔里木盆地南缘不同生境盐生草种群分布特征及地上生物量初步估测[J]. 干旱区资源与环境, 2008, 22(4): 193-197.
|
|
[Sun Hongye, Zhang Ximing, et al. Estimation on aboveground biomass and the characteristics of population families of the halophilous herbaceous plants in three different areas of south Tarim Basin[J]. Journal of Arid Land Resources and Environment, 2008, 22(4): 193-197.]
|
[32] |
Xie H, Zhang H, Ma J, et al. Trend of increasing Holocene summer precipitation in arid Central Asia: Evidence from an organic carbon isotopic record from the LJW10 loess section in Xinjiang, NW China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509: 24-32.
doi: 10.1016/j.palaeo.2018.04.006
|
[33] |
Wang G, Zhou L, Min L, et al. Altitudinal trends of leaf δ13C follow different patterns across a mountainous terrain in north China characterized by a temperate semi-humid climate[J]. Rapid Communications in Mass Spectrometry, 2010, 24(11): 1557-1564.
doi: 10.1002/rcm.4543
|
[34] |
郭正堂, 吴海斌, 魏建晶, 等. 用古土壤有机质碳同位素探讨青藏高原东南缘的隆升幅度[J]. 第四纪研究, 2001, 21(5): 392-398.
|
|
[Guo Zhengtang, Wu Haibin, Wei Jianjing, et al. Tentative estimate of the southeast margin uplift of Qinghai-Xizang Plateau using organic carbon isotope composition of paleosols[J]. Quaternary Sciences, 2001, 21(5): 392-398.]
|
[35] |
Beerling D J. Predicting leaf gas exchange and δ13C responses to the past 30000 years of global environmental change[J]. New Phytologist, 1994, 128(3): 425-433.
doi: 10.1111/j.1469-8137.1994.tb02988.x
pmid: 33874576
|
[36] |
Wang G, Li J, Liu X, et al. Variations in carbon isotope ratios of plants across a temperature gradient along the 400 mm isoline of mean annual precipitation in north China and their relevance to paleovegetation reconstruction[J]. Quaternary Science Reviews, 2013, 63: 83-90.
doi: 10.1016/j.quascirev.2012.12.004
|
[37] |
Edwards T, Graf W, Trimborn P, et al. δ13C response surface resolves humidity and temperature signals in trees[J]. Geochimica et Cosmochimica Acta, 2000, 64(2): 161-167.
doi: 10.1016/S0016-7037(99)00289-6
|
[38] |
Schleser G H, Helle G, Lücke A, et al. Isotope signals as climate proxies: The role of transfer functions in the study of terrestrial archives[J]. Quaternary Science Reviews, 1999, 18(7): 927-943.
doi: 10.1016/S0277-3791(99)00006-2
|
[39] |
Zhao Y, Wu F, Fang X, et al. Altitudinal variations in the bulk organic carbon isotopic composition of topsoil in the Qilian Mountains area, NE Tibetan Plateau, and its environmental significance[J]. Quaternary International, 2017, 454: 45-55.
doi: 10.1016/j.quaint.2017.08.045
|