| [1] |
韩庆杰, 郝才元, 张宏杰, 等. 临哈铁路典型防沙工程区阻风效率与积沙量特征[J]. 中国沙漠, 2021, 41(1): 37-46.
doi: 10.7522/j.issn.1000-694X.2020.00084
|
|
[Han Qingjie, Hao Caiyuan, Zhang Hongjie, et al. Distribution characteristics of wind resistance efficiency and sandaccumulation quantity at typical sand control engineeringarea of LinheHami Railway[J]. Journal of Desert Research, 2021, 41(1): 37-46.]
doi: 10.7522/j.issn.1000-694X.2020.00084
|
| [2] |
Bruno L, Horvat M, Raffaele L. Windblown sand along railway infrastructures: A review of challenges and mitigation measures[J]. Journal of Wind Engineering Industrial Aerodynamics, 2018, 177: 340-365.
doi: 10.1016/j.jweia.2018.04.021
|
| [3] |
席成, 左合君, 王海兵, 等. 高立式尼龙网沙障防风阻沙特征及其合理配置[J]. 干旱区研究, 2021, 38(3): 882-891.
doi: 10.13866/j.azr.2021.03.30
|
|
[Xi Cheng, Zuo Hejun, Wang Haibing, et al. Windproof and sandblocking characteristics of high vertical nylon mesh sand barrier and its rational allocation[J]. Arid Zone Research, 2021, 38(3): 882-891.]
doi: 10.13866/j.azr.2021.03.30
|
| [4] |
常方乐, 康孟珍, 王秀娟, 等. 平行智能风沙防治系统构架与功能——以植物措施为例[J]. 干旱区研究, 2019, 36(6): 1576-1583.
|
|
[Chang Fangle, Kang Mengzhen, Wang Xiujuan, et al. Framework and function of aeolian sand parallel prevention and control: Application of artificial intelligence technology in sand prevention and control[J]. Arid Zone Research, 2019, 36(6): 1576-1583.]
|
| [5] |
顿耀权, 屈建军, 康文岩, 等. 包兰铁路沙坡头段防护体系研究综述[J]. 中国沙漠, 2021, 41(3): 66-74.
doi: 10.7522/j.issn.1000-694X.2021.00018
|
|
[Dun Yaoquan, Qu Jianjun, Kang Wenyan, et al. Progress and prospect of research on the protective system of Shapotou section of the BaotouLanzhou Railway[J]. Journal of Desert Research, 2021, 41(3): 66-74.]
doi: 10.7522/j.issn.1000-694X.2021.00018
|
| [6] |
李选民, 辛国伟, 宋彦宏, 等. 铁路沿线不同沙害区域机械防沙措施设计研究[J]. 铁道勘察, 2023, 49(4): 82-89.
|
|
[Li Xuanmin, Xin Guowei, Song Yanhong, et al. Study on design of mechanical sand prevention measures in different sand damage areas along railway[J]. Railway Investigation and Surveying, 2023, 49(4): 82-89.]
|
| [7] |
黄勇. 酒额铁路戈壁风沙流地区沙害成因及防治措施[J]. 铁道标准设计, 2015, 59(7): 32-35.
|
|
[Huang Yong. Analysis and prevention of sand disaster in Gobi windsand flow region along Jiuquan to Ejina Banner Railway[J]. Railway Standard Design, 2015, 59(7): 32-35.]
|
| [8] |
Shi L, Wang D, Li K. Windblown sand characteristics and hazard control measures for the LanzhouWulumuqi highspeed railway[J]. Natural Hazards, 2020, 104(1): 1-22.
|
| [9] |
Farrell E, Sherman D, Ellis J, et al. Vertical distribution of grain size for wind blown sand[J]. Aeolian Research, 2012(7): 51-61.
|
| [10] |
李悦, 王海兵, 廖承贤, 等. 戈壁风沙运动及其对下垫面砾石盖度影响的风洞模拟[J]. 中国沙漠, 2024, 44(3): 194-201.
doi: 10.7522/j.issn.1000-694X.2024.00036
|
|
[Li Yue, Wang Haibing, Liao Chengxian, et al. Wind tunnel simulation of Gobi sand movement and its influence on gravel coverage of underlying surface[J]. Journal of Desert Research, 2024, 44(3): 194-201.]
doi: 10.7522/j.issn.1000-694X.2024.00036
|
| [11] |
闫敏, 左合君, 贾光普, 等. 不同防沙措施的风沙流及其携沙粒度垂直分异特征[J]. 干旱区地理, 2022, 45(5): 1513-1522.
doi: 10.12118/j.issn.1000-6060.2021.580
|
|
[Yan Min, Zuo Hejun, Jia Guangpu, et al. Vertical distribution characteristics of windsand flow and its grain sizeunder different sand control measures[J]. Arid Land Geography, 2022, 45(5): 1513-1522.]
doi: 10.12118/j.issn.1000-6060.2021.580
|
| [12] |
董治宝, 郑晓静. 中国风沙物理研究50 a(Ⅱ)[J]. 中国沙漠, 2005, 25(6): 795-815.
|
|
[Dong Zhibao, Zheng Xiaojing. Research achievements in aeolian physics in China for last five decades(Ⅱ)[J]. Journal of Desert Research, 2005, 25(6): 795-815.]
|
| [13] |
黎小娟, 周智彬, 李宁, 等. 尼龙网方格沙障风沙流携沙粒度的空间分异特征[J]. 中国沙漠, 2018, 38(1): 76-84.
doi: 10.7522/j.issn.1000-694X.2016.00110
|
|
[Li Xiaojuan, Zhou Zhibin, Li Ning, et al. Spatial distribution of grain size in aeolian flow in nylon net checkerboard barrier[J]. Journal of Desert Research, 2018, 38(1): 76-84.]
doi: 10.7522/j.issn.1000-694X.2016.00110
|
| [14] |
胡平, 杨建英, 张艳, 等. 乌海市沿黄河两岸沙丘风沙流结构差异与冰面风沙特征[J]. 干旱区研究, 2020, 37(3): 765-773.
|
|
[Hu Ping, Yang Jianying, Zhang Yan, et al. Differences in windsand flow structure and characteristics of windsand on ice surface along the Yellow River in Wuhai City[J]. Arid Zone Research, 2020, 37(3): 765-773.]
|
| [15] |
屈建军, 张克存, 张伟民, 等. 几种典型戈壁床面风沙流特性比较[J]. 中国沙漠, 2012, 32(2): 285-290.
|
|
[Qu Jianjun, Zhang Kecun, Zhang Weimin, et al. Characteristics of sandblown flow over simulated gobi surfaces[J]. Journal of Desert Research, 2012, 32(2): 285-290.]
|
| [16] |
白子怡, 董治宝, 南维鸽, 等. 植被盖度对风沙流结构及输沙率的影响[J]. 中国沙漠, 2024, 44(2): 25-34.
doi: 10.7522/j.issn.1000-694X.2023.00088
|
|
[Bai Ziyi, Dong Zhibao, Nan Weige, et al. Effects of vegetation coverage on wind-blown sand flow structure and sediment transport rate[J]. Journal of Desert Research, 2024, 44(2): 25-34.]
doi: 10.7522/j.issn.1000-694X.2023.00088
|
| [17] |
An Z G, Jin A F, Musa R. SPH numerical simulation study on windsand flow structure of multidiameter sand[J]. Computational Particle Mechanics, 2022, 10(4): 747-756.
doi: 10.1007/s40571-022-00529-y
|
| [18] |
范亚伟, 杜鹤强, 卢善龙, 等. 长江源卓乃湖流域地表沉积物粒度分布与风沙流结构[J]. 中国沙漠, 2023, 43(3): 47-56.
doi: 10.7522/j.issn.1000-694X.2022.00138
|
|
[Fan Yawei, Du Heqiang, Lu Shanlong, et al. Surface particle size composition and aeoliansand flow structure of Zuo Lake Basin in the source of Yangtze River[J]. Journal of Desert Research, 2023, 43(3): 47-56.]
doi: 10.7522/j.issn.1000-694X.2022.00138
|
| [19] |
李思瑶, 蒙仲举, 祁帅. 草原干涸湖床地表粒度特征及其对沙尘释放的影响[J]. 水土保持学报, 2024, 38(2): 38-46.
|
|
[Li Siyao, Meng Zhongju, Qi Shuai. Surface grain size characteristics of grassland dry lake bed and its influence on dust emission[J]. Journal of Soil and Water Conservation, 2024, 38(2): 38-46.]
|
| [20] |
Folk R L, Brazos R. A study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27: 3-26.
doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D
|
| [21] |
Wentworth K C. A scale of grade and class terms for clastic sediments[J]. The Journal of Geology, 1922, 30(5): 377-392.
doi: 10.1086/622910
|
| [22] |
刘茜雅, 王海兵, 左合君, 等. 砂砾质戈壁沉积物分形维数计算及其对风沙作用的指示意义[J]. 干旱区资源与环境, 2019, 33(10): 125-130.
|
|
[Liu Xiya, Wang Haibing, Zuo Hejun, et al. Calculation of fractal dimension of gobi sediments and its significance to the effect of windinduced soil erosion accumulation[J]. Journal of Arid Land Resources and Environment, 2019, 33(10): 125-130.]
|
| [23] |
熊鑫, 王海兵, 肖建华, 等. 戈壁沙砾质地表沉积物全粒径分布模式及其对分选作用的指示意义[J]. 中国沙漠, 2019, 39(2): 202-208.
doi: 10.7522/j.issn.1000-694X.2019.00012
|
|
[Xiong Xin, Wang Haibing, Xiao Jianhua, et al. Particle size distribution models of gobi sediments and its significance to the effect of sorting[J]. Journal of Desert Research, 2019, 39(2): 202-208.]
doi: 10.7522/j.issn.1000-694X.2019.00012
|
| [24] |
王志强, 黄晟敏, 于涛, 等. 戈壁地表风沙运动特征的野外观测研究[J]. 新疆环境保护, 2010, 32(3): 10-13.
|
|
[Wang Zhiqiang, Huang Shengmin, Yu Tao, et al. Research on the characteristics of blowing sand drift over gobi surface by field experiment[J]. Environmental Protection of Xinjiang, 2010, 32(3): 10-13.]
|
| [25] |
刘蓉, 岳大鹏, 赵景波, 等. 陕西横山L2以来风沙/黄土沉积序列的粒度端元特征及其环境意义[J]. 干旱区地理, 2021, 44(5): 1328-1338.
doi: 10.12118/j.issn.1000–6060.2021.05.14
|
|
[Liu Rong, Yue Dapeng, Zhao Jingbo, et al. Grainsize endmember characteristics and environmental significance of aeolian sand/loess sedimentary sequences since L2 in Hengshan, Shaanxi[J]. Arid Land Geography, 2021, 44(5): 1328-1338.]
doi: 10.12118/j.issn.1000–6060.2021.05.14
|
| [26] |
董智, 王丽琴, 杨文斌, 等. 额济纳盆地戈壁沉积物粒度特征分析[J]. 中国水土保持科学, 2013, 11(1): 32-38.
|
|
[Dong Zhi, Wang Liqin, Yang Wenbin, et al. Grain size characteristics of gobi sediment in Ejina Basin[J]. Science of Soil and Water Conservation, 2013, 11(1): 32-38.]
|
| [27] |
冯大军, 倪晋仁, 李振山. 风沙流中沙粒粒度的垂直和水平分布特征[J]. 泥沙研究, 2008(5): 22-30.
|
|
[Feng Dajun, Ni Jinren, Li Zhenshan. Vertical and horizontal profiles of grain size in aeolian sand transport[J]. International Journal of Sediment Research, 2008(5): 22-30.]
|
| [28] |
王翠, 雷加强, 李生宇, 等. 策勒绿洲-沙漠过渡带风沙流挟沙粒度的垂直分异[J]. 干旱区地理, 2014, 37(2): 230-238.
|
|
[Wang Cui, Lei Jiaqiang, Li Shengyu, et al. Vertical differentiation of sandcarrying grain size of windsand flow in Cele oasisdesert transitional zone[J]. Arid Land Geography, 2014, 37(2): 230-238.]
|