收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2025, Vol. 48 ›› Issue (12): 2143-2157.doi: 10.12118/j.issn.1000-6060.2025.044 cstr: 32274.14.ALG2025044

• 气候变化与地表过程 • 上一篇    下一篇

艾比湖春夏季土壤盐渍化卫星监测对比分析

郭佳丽1(), 马勇刚2,3(), 潘恒1, 李娜1, 孙长宁1, 孙倩1, 周文昶1, 党瑀璇1   

  1. 1 新疆大学生态与环境学院新疆 乌鲁木齐 830000
    2 新疆大学地理与遥感科学学院新疆 乌鲁木齐 830000
    3 新疆大学绿洲生态教育部重点实验室新疆 乌鲁木齐 830000
  • 收稿日期:2025-05-21 修回日期:2025-05-28 出版日期:2025-12-25 发布日期:2025-12-30
  • 通讯作者: 马勇刚(1981-),男,教授,主要从事物候、干旱区生态遥感技术应用等方面的研究. E-mail: mayg@xju.edu.cn
  • 作者简介:郭佳丽(2000-),女,硕士研究生,主要从事生态遥感应用等方面的研究. E-mail: 107552201225@stu.xju.edu.cn
  • 基金资助:
    第三次新疆综合科学考察项目(2021xjkk1400);新疆维吾尔自治区自然科学基金(2023D01D01)

Comparative analysis of satellite monitoring of soil salinization in Ebinur Lake during spring and summer

GUO Jiali1(), MA Yonggang2,3(), PAN Heng1, LI Na1, SUN Changning1, SUN Qian1, ZHOU Wenchang1, DANG Yuxuan1   

  1. 1 College of Ecology and Environment, Xinjiang University, Urumqi 830000, Xinjiang, China
    2 College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830000, Xinjiang, China
    3 Key Laboratory of Oasis Ecology, Ministry of Education, Xinjiang University, Urumqi 830000, Xinjiang, China
  • Received:2025-05-21 Revised:2025-05-28 Published:2025-12-25 Online:2025-12-30

摘要:

土壤盐渍化是干旱、半干旱地区严重危害农业生产和生态环境的重要因素,准确获取其时空分布特征是当前生态学、地理学和农业领域研究的重点。利用4、7月的Sentinel-2A影像和对应时间的土壤表层实测含盐量数据,采用随机森林(Random forest,RF)、支持向量机回归、回归决策树、自适应增强、梯度提升回归树5种机器学习方法和深度置信网络、全卷积神经网络2种深度学习方法,通过Boruta算法筛选变量,构建艾比湖土壤盐分反演模型,并进行预测和精度评价。结果表明:(1) 4月土壤盐分与各波段之间表现出强正相关,7月整体的相关性强度有所降低。多光谱指数与土壤盐分呈现出强正相关的是强度指数(Int1、Int2)、盐分指数(S3S5S6、SI、SI1、SI2、SI3)、比值指数,归一化差值指数与土壤盐分呈强负相关。(2) 4月RF模型精度最高($\overline{{R}^{2}}$=0.72,$\overline{\mathrm{R}\mathrm{M}\mathrm{S}\mathrm{E}}$=0.13);7月RF模型精度最高($\overline{{R}^{2}}$=0.66,$\overline{\mathrm{R}\mathrm{M}\mathrm{S}\mathrm{E}}$=0.15)。因此,最佳模型为RF模型。在时相选择上,4月相比7月反演精度更高,最有利于干旱区土壤盐分反演。

关键词: Sentinel-2A, 土壤含盐量, 遥感反演, 机器学习, 深度学习

Abstract:

Soil salinization is a major factor in arid and semi-arid regions, adversely affecting agricultural production and the ecological environment. Accurately capturing the spatiotemporal distribution of soil salinization has become a key focus in current research across the fields of ecology, geography, and agriculture. In this study, Sentinel-2A imagery from April and July, along with corresponding in-situ measurements of the salinity of surface soil, were utilized to construct soil salinity inversion models for the Ebinur Lake region. Five machine learning algorithms [random forest (RF), support vector regression, decision tree regression, adaptive boosting (Adaboost), and gradient boosting regression tree] and two deep learning methods(deep belief network and fully convolutional network] were employed for this purpose. Variables were selected using the Boruta algorithm to enhance the performance of the model. The results indicate that: (1) In April, the soil salinity exhibited a strong positive correlation with various spectral bands, whereas the overall correlation strength decreased in July. Among multispectral indices, the intensity indices (Int1, Int2), salinity indices (S3, S5, S6, SI, SI1, SI2, SI3), and the ratio index showed strong positive correlations with the soil salinity, whereas the normalized difference index displayed a strong negative correlation. (2) The RF model achieved the highest predictive accuracy in both time periods, with an average R2 and RMSE of 0.72 and 0.13 in April and 0.66, and 0.15 in July, respectively. Therefore, the RF model was identified as the optimal model in this study. Furthermore, in terms of temporal selection, soil salinity inversion in April yielded higher accuracy compared to July, indicating that April is more favorable for soil salinity monitoring in arid regions.

Key words: Sentinel-2A, soil salinity, remote sensing inversion, machine learning, deep learning