干旱区地理 ›› 2024, Vol. 47 ›› Issue (10): 1735-1744.doi: 10.12118/j.issn.1000-6060.2024.036 cstr: 32274.14.ALG2024036
杨晓玲1,2(), 丁文魁1(), 周华1, 李岩瑛1, 陈海贝3
收稿日期:
2024-01-17
修回日期:
2024-02-29
出版日期:
2024-10-25
发布日期:
2024-11-27
通讯作者:
丁文魁(1970-),男,正高级工程师,主要从事气候变化与农业气象等方面的研究. E-mail: wwqxj.6150343@163.com作者简介:
杨晓玲(1971-),女,高级工程师,主要从事气候变化及生态农业等方面的研究. E-mail: wwqxj6150343@163.com
基金资助:
YANG Xiaoling1,2(), DING Wenkui1(), ZHOU Hua1, LI Yanying1, CHEN Haibei3
Received:
2024-01-17
Revised:
2024-02-29
Published:
2024-10-25
Online:
2024-11-27
摘要:
石羊河流域土地荒漠化问题严重,生态环境十分脆弱。以石羊河流域2000—2020年逐月NASA GIMMS归一化植被指数(Normalized difference vegetation index,NDVI)、气温、降水量、日照时数和蒸发量等资料为基础,采用趋势斜率、累积距平和信噪比、相关系数、多元回归等方法,分析研究了石羊河流域的植被指数变化及驱动因子。结果表明:(1)受海拔高度、地形地貌和气候差异的影响,石羊河流域NDVI的空间分布为上游>全流域>中游>下游。(2)全流域及上、中游年NDVI呈明显增长趋势,下游呈轻微增长趋势,趋势斜率为上游>全流域>中游>下游,各季节NDVI也呈增长趋势,夏、秋、冬季基本为明显增长。全流域及上、中、下游年NDVI在2010年或2011年发生了突变。(3)影响石羊河流域NDVI变化的气候因子依次为降水量、气温、蒸发量、日照时数。石羊河流域NDVI变化是气候变化与人类活动共同驱动的结果,全流域及上游气候因子对NDVI的贡献率比人类活动大,中、下游气候因子和人类活动对NDVI贡献相当。突变后人类活动的贡献率比突变前明显增大,气候因子的贡献率相对削弱。研究结果可为石羊河流域植被恢复及生态环境保护提供科学依据。
杨晓玲, 丁文魁, 周华, 李岩瑛, 陈海贝. 石羊河流域归一化植被指数变化及其驱动因子分析[J]. 干旱区地理, 2024, 47(10): 1735-1744.
YANG Xiaoling, DING Wenkui, ZHOU Hua, LI Yanying, CHEN Haibei. Normalized difference vegetation index change and its driving factors in Shiyang River Basin[J]. Arid Land Geography, 2024, 47(10): 1735-1744.
表2
石羊河流域各季节NDVI的均值、趋势斜率及增长等级"
季节 | 指标 | 全流域 | 上游 | 中游 | 下游 |
---|---|---|---|---|---|
春季 | 多年均值 | 0.1610 | 0.1964 | 0.1629 | 0.0864 |
趋势斜率/·a-1 | 0.0013 | 0.0023 | 0.0008 | 0.0004 | |
增长等级 | 中度增长 | 明显增长 | 轻微不变 | 基本不变 | |
夏季 | 多年均值 | 0.3075 | 0.3964 | 0.3054 | 0.1335 |
趋势斜率/·a-1 | 0.0035 | 0.0043 | 0.0039 | 0.0011 | |
增长等级 | 明显增长 | 明显增长 | 明显增长 | 中度增长 | |
秋季 | 多年均值 | 0.2144 | 0.2784 | 0.2037 | 0.1080 |
趋势斜率/·a-1 | 0.0028 | 0.0041 | 0.0024 | 0.0008 | |
增长等级 | 明显增长 | 明显增长 | 明显增长 | 轻微增长 | |
冬季 | 多年均值 | 0.1258 | 0.1567 | 0.1175 | 0.0807 |
趋势斜率/·a-1 | 0.0016 | 0.0019 | 0.0016 | 0.0007 | |
增长等级 | 明显增长 | 明显增长 | 明显增长 | 轻微增长 |
表3
石羊河流域NDVINA的回归模型及参数"
地名 | 多元回归模型 | 复相关系数 | R2 | 置信水平 |
---|---|---|---|---|
全流域 | NDVINA=0.3403*T+0.7706***P-0.1159S+0.3287E | 0.7855 | 0.6171 | 0.01 |
上游 | NDVINA=0.3513*T+0.8641***P-0.0896S+0.2684E | 0.8084 | 0.6535 | 0.01 |
中游 | NDVINA=0.5386**T+0.6091**P-0.1172S-0.0339E | 0.7378 | 0.5443 | 0.01 |
下游 | NDVINA=0.4672*T+0.2678P-0.1281S+0.1958E | 0.5861 | 0.3436 | 0.01 |
[1] | Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems[J]. Nature, 2003, 421(6918): 37-42. |
[2] | Walker B, Steffen W. IGBP Science No.1: A synthesis of GCTE and related research[M]. Stockholm: IGBP, 1997: 1-24. |
[3] | Fischlin A, Midgley G F, Price J T, et al. Ecosystems, their properties, goods and services[C]//Parry M L, Canziani O F, Palutikof J P, et al. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group Ⅱ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007: 211-272. |
[4] | Faour G, Mhawej M, Nasrallah A, et al. Global trends analysis of the main vegetation types throughout the past four decades[J]. Applied Geography, 2018, 97: 184-195. |
[5] |
龙爽, 郭正飞, 徐粒, 等. 基于Google Earth Engine的中国植被覆盖度时空变化特征分析[J]. 遥感技术与应用, 2020, 35(2): 326-334.
doi: 10.11873/j.issn.1004-0323.2020.2.0326 |
[Long Shuang, Guo Zhengfei, Xu Li, et al. Spatiaotemporal variations of fractional vegetation coverage in China based on Google Earth Engine[J]. Remote Sensing Technology and Application, 2020, 35(2): 326-334.] | |
[6] | 李晶, 闫星光, 闫萧萧, 等. 基于GEE云平台的黄河流域植被覆盖度时空变化特征[J]. 煤炭学报, 2021, 46(5): 1439-1450. |
[Li Jing, Yan Xingguang, Yan Xiaoxiao, et al. Temporal and spatial variation characteristic of vegetation coverage in Yellow River Basin based on GEE cloud platform[J]. Journal of China Coal Society, 2021, 46(5): 1439-1450.] | |
[7] | Nautiyal M C, Nautiyal B P, Vinay P. Effect of grazing and climatic changes on alpine vegetation of Tungnath, Garhwal Himalaya, India[J]. The Environmentalist, 2001, 24: 125-134. |
[8] | Zhou L M, Tucker C J, Kaufmann R K, et al. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999[J]. Journal of Geophysical Research-Atmospheres, 2001, 106(D17): 20069-20083. |
[9] | Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes from 1981 to 1991[J]. Nature, 1997, 386(6626): 698-702. |
[10] | Ma M G, Wang J, Wang X M. Progress of the relationship between the interannual variation of vegetation and climate based on remote sensing[J]. Journal of Remote Sensing, 2006, 10(3): 421-431. |
[11] | 施雅风, 沈永平, 胡汝骥, 等. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J]. 冰川冻土, 2002, 24(3): 219-226. |
[Shi Yafeng, Shen Yongping, Hu Ruji, et al. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in northwest China[J]. Journal of Glaciology and Geocryology, 2002, 24(3): 219-226.] | |
[12] | 方精云, 朴世龙, 贺金生, 等. 近20年来中国植被活动在增强[J]. 中国科学(C辑), 2003, 33(6): 554-565. |
[Fang Jingyun, Piao Shilong, He Jinsheng, et al. Vegetation activity has increased in China in the past 20 years[J]. Science in Chinese (Series C), 2003, 33(6): 554-565.] | |
[13] | 戴声佩, 张勃, 王强, 等. 祁连山草地植被NDVI变化及其对气温降水的旬响应特征[J]. 资源科学, 2010, 32(9): 1769-1776. |
[Dai Shengpei, Zhang Bo, Wang Qiang, et al. Variation in grassland vegetation NDVI and its ten-day response to temperature and precipitation in the Qilian Mountains[J]. Resource Science, 2010, 32(9): 1769-1776.] | |
[14] |
王志鹏, 张宪洲, 何永涛, 等. 2000—2015年青藏高原草地归一化植被指数对降水变化的响应[J]. 应用生态学报, 2018, 29(1): 75-83.
doi: 10.13287/j.1001-9332.201801.014 |
[Wang Zhipeng, Zhang Xianzhou, He Yongtao, et al. Responses of normalized difference vegetation index (NDVI) to precipitation changes on the grassland of Tibetan Plateau from 2000 to 2015[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 75-83.]
doi: 10.13287/j.1001-9332.201801.014 |
|
[15] |
赵倩倩, 张京朋, 赵天保, 等. 2000年以来中国区域植被变化及其对气候变化的响应[J]. 高原气象, 2021, 40(2): 292-301.
doi: 10.7522/j.issn.1000-0534.2020.00025 |
[Zhao Qianqian, Zhang Jingpeng, Zhao Tianbao, et al. Vegetation changes and its response to climate change in China since 2000[J]. Plateau Meteorology, 2021, 40(2): 292-301.]
doi: 10.7522/j.issn.1000-0534.2020.00025 |
|
[16] | 陈婉佳, 刘蓉蓉, 何政伟. 基于MODIS的植被指数变化研究及其与气候因子的关系分析[J]. 测绘与空间地理信息, 2015, 38(9): 77-80. |
[Chen Wanjia, Liu Rongrong, He Zhengwei. The research of MODIS vegetation indices and the relationship with meteorological factors[J]. Geomatics & Spatial Information Technology, 2015, 38(9): 77-80.] | |
[17] | 薛宇轩, 卢宏玮. 青藏高原植被覆盖变化及气候驱动因子分析[J]. 湖北农业科学, 2020, 59(15): 44-48. |
[Xue Yuxuan, Lu Hongwei. Analysis of vegetation cover change and climate driving factors on the Qinghai-Tibet Plateau[J]. Hubei Agricultural Sciences, 2020, 59(15): 44-48.] | |
[18] |
艾丽亚, 王永芳, 郭恩亮, 等. 基于GEE的大青山国家级自然保护区NDVI变化及影响因素分析[J]. 干旱区地理, 2023, 46(8): 1279-1290.
doi: 10.12118/j.issn.1000-6060.2022.584 |
[Ai Liya, Wang Yongfang, Guo Enliang, et al. NDVI change and its influencing factors of Daqingshan National Nature Reserve based on GEE[J]. Arid Land Geography, 2023, 46(8): 1279-1290.]
doi: 10.12118/j.issn.1000-6060.2022.584 |
|
[19] | 颉耀文, 陈发虎. 基于数字遥感图像的民勤绿洲20年变化研究[J]. 干旱区研究, 2002, 19(1): 69-74. |
[Jie Yaowen, Chen Fahu. Study on the change of Minqin oasis since recent twenty years based on digital RS images[J]. Arid Zone Research, 2002, 19(1): 69-74.] | |
[20] | 李忆春, 陈发虎. 民勤盆地水资源可持续利用对策——2000年民勤水资源利用调查[J]. 山地学报, 2001, 19(5): 465-469. |
[Li Yichun, Chen Fahu. Water resources sustainable utilization countermeasures in Minqin Basin of Gansu Province: Minqin resources utilization survey in 2000[J]. Journal of Mountain Science, 2001, 19(5): 465-469.] | |
[21] |
韩涛, 王大为. 2000—2014年石羊河流域植被覆盖变化研究[J]. 中国农学通报, 2017, 33(13): 66-74.
doi: 10.11924/j.issn.1000-6850.casb17010105 |
[Han Tao, Wang Dawei. Change of vegetation coverage in Shiyang River Basin 2000—2014[J]. Chinese Agricultural Science Bulletin, 2017, 33(13): 66-74.]
doi: 10.11924/j.issn.1000-6850.casb17010105 |
|
[22] | 张立峰. 西北生态环境脆弱区典型内陆河流域植被覆盖变化及其影响因素研究[D]. 兰州: 兰州交通大学, 2017. |
[Zhang Lifeng. Vegetation cover change and influencing factors in northwest ecological environment fragile area China[D]. Lanzhou: Lanzhou Jiaotong University, 2017.] | |
[23] | 白肇烨, 徐国昌, 孙学筠, 等. 中国西北天气[M]. 北京: 气象出版社, 1991: 258-357. |
[Bai Zhaoye, Xu Guochang, Sun Xuejun, et al. Weather over northwest China[M]. Beijing: Meteorological Press, 1991: 258-357.] | |
[24] | 高安. 石羊河流域的土壤类型[J]. 中国沙漠, 1984, 4(3): 26-35. |
[Gao An. Soil type in the Shiyang River Valley[J]. Journal of Desert Research, 1984, 4(3): 26-35.] | |
[25] |
毛忠超, 李森, 张志山, 等. 荒漠-过渡带-绿洲界定——以石羊河流域为例[J]. 中国沙漠, 2020, 40(2): 177-184.
doi: 10.7522/j.issn.1000-694X.2019.00091 |
[Mao Zhongchao, Li Sen, Zhang Zhishan, et al. Desert-ecotone-oasis division: Taking the Shiyang River Basin as an example[J]. Journal of Desert Research, 2020, 40(2): 177-184.]
doi: 10.7522/j.issn.1000-694X.2019.00091 |
|
[26] | 罗晓玲, 杨梅, 李岩瑛, 等. 基于NDVI的石羊河流域植被演变特征及其对沙尘暴的影响分析[J]. 水土保持学报, 2022, 36(2): 84-91. |
[Luo Xiaoling, Yang Mei, Li Yanying, et al. Analysis on characteristics of vegetation evolution and its impact on sandstorm in Shiyang River Basin based on NDVI[J]. Journal of Soil and Water Conservation, 2022, 36(2): 84-91.] | |
[27] | 郑倩, 史海滨, 李仙岳, 等. 河套灌区解放闸灌域植被指数与地下水埋深的定量关系[J]. 水土保持学报, 2021, 35(1): 301-306, 313. |
[Zheng Qian, Shi Haibin, Li Xianyue, et al. Study of quantitative relationship between vegetation index and groundwater depth in Jiefangzha irrigation area in the Hetao irrigation district[J]. Journal of Soil and Water Conservation, 2021, 35(1): 301-306, 313.] | |
[28] | 白旭阳, 刘昱坤, 杨武超, 等. 新疆玛纳斯河流域植被变化的特征与归因[J]. 水土保持学报, 2020, 34(6): 192-197, 210. |
[Bai Xuyang, Liu Yukun, Yang Wuchao, et al. Characteristics and attribution of vegetation change in Manas River Basin, Xinjiang[J]. Journal of Soil and Water Conservation, 2020, 34(6): 192-197, 210.] | |
[29] | 方健梅, 马国青, 余新晓, 等. 青海湖流域NDVI时空变化特征及其与气候之间的关系[J]. 水土保持学报, 2020, 34(3): 105-112. |
[Fang Jianmei, Ma Guoqing, Yu Xinxiao, et al. Spatiotemporal change of NDVI in Qinghai Lake Basin and its relationship with climate factors[J]. Journal of Soil and Water Conservation, 2020, 34(3): 105-112.] | |
[30] | 魏凤英. 现代气候统计诊断与预测技术[M]. 2版. 北京: 气象出版社, 2007. |
[Wei Fengying. Modern climatic statistical diagnosis and prediction technology[M]. 2nd ed. Beijing: Meteorological Press, 2007.] | |
[31] | 宋怡, 马明国. 基于SPOT VEGETATION数据的中国西北植被覆盖变化分析[J]. 中国沙漠, 2007, 27(1): 89-93. |
[Song Yi, Ma Mingguo. Study on the vegetation cover change in northwest China based on SPOT VEGETATION data[J]. Journal of Desert Research, 2007, 27(1): 89-93.] | |
[32] | 庞静. 基于地理探测器模型的自然和人为因素对植被变化的影响[D]. 太原: 山西大学, 2016. |
[Pang Jing. Geographical detector-based identifying the impact of natural and human factors on vegetation changes[D]. Taiyuan: Shanxi University, 2016.] | |
[33] | 黄嘉佑. 气候状态变化趋势与突变分析[J]. 气象, 1995, 21(7): 54-57. |
[Huang Jiayou. Climate change trend and mutation analysis[J]. Meteorological Monthly, 1995, 21(7): 54-57.] | |
[34] | 肖建勇, 王世杰, 白晓永, 等. 喀斯特关键带植被时空变化及其驱动因素[J]. 生态学报, 2018, 38(24): 138-151. |
[Xiao Jianyong, Wang Shijie, Bai Xiaoyong, et al. Determinants and spatial-temporal evolution of vegetation coverage in the karst critical zone of south China[J]. Acta Ecologica Sinica, 2018, 38(24): 138-151.] | |
[35] |
尹振良, 冯起, 王凌阁, 等. 2000—2019年中国西北地区植被覆盖变化及其影响因子[J]. 中国沙漠, 2022, 42(4): 11-21.
doi: 10.7522/j.issn.1000-694X.2021.00200 |
[Yin Zhenliang, Feng Qi, Wang Lingge, et al. Vegetation coverage change and its influencing factors across the northwest region of China during 2000—2019[J]. Journal of Desert Research, 2022, 42(4): 11-21.]
doi: 10.7522/j.issn.1000-694X.2021.00200 |
|
[36] |
金凯, 王飞, 韩剑桥, 等. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5): 961-974.
doi: 10.11821/dlxb202005006 |
[Jin Kai, Wang Fei, Han Jianqiao, et al. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982—2015[J]. Acta Geographica Sinica, 2020, 75(5): 961-974.] | |
[37] |
孙高鹏, 刘宪锋, 王小红, 等. 2001—2020年黄河流域植被覆盖变化及其影响因素[J]. 中国沙漠, 2021, 41(4): 205-212.
doi: 10.7522/j.issn.1000-694X.2021.00076 |
[Sun Gaopeng, Liu Xianfeng, Wang Xiaohong, et al. Changes in vegetation coverage and its influencing factors across the Yellow River Basin during 2001—2020[J]. Journal of Desert Research, 2021, 41(4): 205-212.]
doi: 10.7522/j.issn.1000-694X.2021.00076 |
|
[38] |
陈淑君, 许国昌, 吕志平, 等. 中国植被覆盖度时空演变及其对气候变化和城市化的响应[J]. 干旱区地理, 2023, 46(5): 742-752.
doi: 10.12118/j.issn.1000-6060.2022.375 |
[Chen Shujun, Xu Guochang, Lü Zhiping, et al. Spatiotemporal variations of fractional vegetation cover and its response to climate change and urbanization in China[J]. Arid Land Geography, 2023, 46(5): 742-752.]
doi: 10.12118/j.issn.1000-6060.2022.375 |
|
[39] | 徐晓宁, 郭萍, 张帆, 等. 政策驱动下石羊河流域生态效应变化分析[J]. 水土保持学报, 2020, 34(6): 185-191. |
[Xu Xiaoning, Guo Ping, Zhang Fan, et al. Analysis for changing ecological effects under policy-driven in Shiyang River Basin[J]. Journal of Soil and Water Conservation, 2020, 34(6): 185-191.] | |
[40] |
任媛, 刘普幸. 基于EVI和MNDWI指数的石羊河流域水体、植被时空变化特征[J]. 冰川冻土, 2018, 40(4): 853-861.
doi: 10.7522/j.issn.1000-0240.2018.0092 |
[Ren Yuan, Liu Puxing. Temporal and spatial variations of water and vegetation in Shiyang River Basin based on EVI and MNDWI[J]. Journal of Glaciology and Geocryology, 2018, 40(4): 853-861.]
doi: 10.7522/j.issn.1000-0240.2018.0092 |
|
[41] | 李依璇, 朱清科, 石若莹, 等. 2000—2018年黄土高原植被覆盖时空变化及影响因素[J]. 中国水土保持科学, 2021, 19(4): 60-68. |
[Li Yixuan, Zhu Qingke, Shi Ruoying, et al. Spatial and temporal changes of vegetation cover and its influencing factors in the Loess Plateau from 2000 to 2018[J]. Science of Soil and Water Conservation, 2021, 19(4): 60-68.] | |
[42] | 张建香, 胡爱萍, 张多勇. 陕甘宁黄土高原区植被覆盖空间格局演变[J]. 西北师范大学学报(自然科学版), 2021, 57(5): 71-76. |
[Zhang Jianxiang, Hu Aiping, Zhang Duoyong. Vegetation coverage variation in Loess Plateau area of Shaanxi-Gansu-Ningxia[J]. Journal of Northwest Normal University (Natural Science Edition), 2021, 57(5): 71-76.] | |
[43] | Evans J, Geerken R. Discrimination between climate and human-induced dry land degradation[J]. Journal of Arid Environments, 2004, 57: 535-554.] |
[44] |
刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26.
doi: 10.17521/cjpe.2021.0163 |
[Liu Ning, Peng Shouzhang, Chen Yunming. Temporal effects of climate factors on vegetation growth on the Qinghai Plateau, China[J]. Chinese Journal of Plant Ecology, 2022, 46(1): 18-26.]
doi: 10.17521/cjpe.2021.0163 |
[1] | 胡飞鹏, 赵军, 孙紫云, 刘坚, 托瑞. 石羊河流域生态系统服务相互作用的时空变化及驱动机制研究[J]. 干旱区地理, 2024, 47(10): 1755-1766. |
[2] | 张港栋, 包刚, 黄晓君, 元志辉, 温都日娜. 蒙古国冬春季气候非对称变暖及其对植被返青期和春季NDVI的影响[J]. 干旱区地理, 2023, 46(8): 1238-1249. |
[3] | 艾丽亚, 王永芳, 郭恩亮, 银山, 顾锡羚. 基于GEE的大青山国家级自然保护区NDVI变化及影响因素分析[J]. 干旱区地理, 2023, 46(8): 1279-1290. |
[4] | 罗嘉艳, 张靖, 徐梦冉, 莫宇, 同丽嘎. 浑善达克沙地植被变化定量归因及多情景预测[J]. 干旱区地理, 2023, 46(4): 614-624. |
[5] | 郭方君, 马全林, 张锦春, 李得禄, 袁宏波, 陈芳, 魏林源, 张德魁. 石羊河流域荒漠区植被类型、分布和数量特征[J]. 干旱区地理, 2023, 46(11): 1848-1857. |
[6] | 美合日阿依·莫一丁, 买买提·沙吾提, 李金朝. 基于Sentinel-2时间序列数据及物候特征的棉花种植区提取[J]. 干旱区地理, 2022, 45(6): 1847-1859. |
[7] | 贺军奇,魏燕,高万德,陈云飞,马延东,刘秀花. 毛乌素沙地东南缘植被NDVI时空变化及其对气候因子的响应[J]. 干旱区地理, 2022, 45(5): 1523-1533. |
[8] | 代云豪,管瑶,张钦凯,孙峻杰,贺兴宏. 阿拉尔垦区土壤盐渍化遥感监测及时空特征分析[J]. 干旱区地理, 2022, 45(4): 1176-1185. |
[9] | 任立清. 艾比湖流域植被时空变化及驱动力分析[J]. 干旱区地理, 2022, 45(2): 467-477. |
[10] | 张军民,荣城,马玉香. 新疆城镇化绿色发展时空分异及驱动因子探究[J]. 干旱区地理, 2022, 45(1): 251-262. |
[11] | 贾丹阳,熊祯祯,高岩,张杰华,王姝怡,赵元杰. 近30 a台特玛湖地区土地利用/土地覆被变化及其影响因素[J]. 干旱区地理, 2021, 44(4): 1022-1031. |
[12] | 朱淑珍,黄法融,李兰海. 巴基斯坦干旱特征及其风险评估[J]. 干旱区地理, 2021, 44(4): 1058-1069. |
[13] | 李玉朋,陈亚宁,叶朝霞,王非,孙帆,秦景秀. 塔里木河下游输水20 a的生态响应[J]. 干旱区地理, 2021, 44(3): 700-707. |
[14] | 谷佳贺,薛华柱,董国涛,周利娟,李静茹,党素珍,李尚志. 黄河流域NDVI/土地利用对蒸散发时空变化的影响[J]. 干旱区地理, 2021, 44(1): 158-167. |
[15] | 庞冉, 王文. 基于 MODIS 数据的吐鲁番盆地 2001—2017 年 植被变化及水热组合影响分析[J]. 干旱区地理, 2020, 43(5): 1242-1252. |
|