[1] |
黄润秋. 把碳达峰碳中和纳入生态文明建设整体布局[N]. 学习时报, 2021-11-17(001).
|
|
[Huang Runqiu. Promote the goal of carbon peak and carbon neutralization as scheduled[N]. Learning Times, 2021-11-17(001).]
|
[2] |
习近平. 在第七十五届联合国大会一般性辩论上的讲话[N]. 人民日报, 2020-09-23(001).
|
|
[Xi Jinping. Speech on the 75th session of the United Nations general assembly[N]. People’s Daily, 2020-09-23(001).]
|
[3] |
田云, 张俊飚, 李波. 中国农业碳排放研究: 测算、时空比较及脱钩效应[J]. 资源科学, 2012, 34(11): 2097-2105.
|
|
[Tian Yun, Zhang Junbiao, Li Bo. Agricultural carbon emissions in China: Calculation, spatial-temporal comparison and decoupling effects[J]. Resources Science, 2012, 34(11): 2097-2105.]
|
[4] |
董红敏, 李玉娥, 陶秀萍, 等. 中国农业源温室气体排放与减排技术对策[J]. 农业工程学报, 2008, 24(10): 269-273.
|
|
[Dong Hongmin, Li Yu’e, Tao Xiuping, et al. China greenhouse gas emissions from agricultural activities and its mitigation strategy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(10): 269-273.]
|
[5] |
张小平, 王龙飞. 甘肃省农业碳排放变化及影响因素分析[J]. 干旱区地理, 2014, 37(5): 1029-1035.
|
|
[Zhang Xiaoping, Wang Longfei. Variations and influential factors of agricultural carbon emissions in Gansu Province[J]. Arid Land Geography, 2014, 37(5): 1029-1035.]
|
[6] |
邱子健, 靳红梅, 高南, 等. 江苏省农业碳排放时序特征与趋势预测[J]. 农业环境科学学报, 2022, 41(3): 658-669.
|
|
[Qiu Zijian, Jin Hongmei, Gao Nan, et al. Temporal characteristics and trend prediction of agricultural carbon emission in Jiangsu Province, China[J]. Journal of Agro-Environment Science, 2022, 41(3): 658-669.]
|
[7] |
Havlik P, Valin H, Herrero M, et al. Climate change mitigation through livestock system transitions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(10): 3709-3714.
doi: 10.1073/pnas.1308044111
pmid: 24567375
|
[8] |
Luo Y S, Long X L, Wu C, et al. Decoupling CO2 emissions from economic growth in agricultural sector across 30 Chinese provinces from 1997 to 2014[J]. Journal of Cleaner Production, 2017, 159: 220-228.
doi: 10.1016/j.jclepro.2017.05.076
|
[9] |
Xiong C H, Chen S, Xu L T. Driving factors analysis of agricultural carbon emissions based on extended STIRPAT model of Jiangsu Province, China[J]. Growth and Change, 2020, 51(3): 1401-1416.
doi: 10.1111/grow.v51.3
|
[10] |
Zhang J T, Tian H Q, Shi H, et al. Increased greenhouse gas emission intensity of major croplands in China: Implications for food security and climate change mitigation[J]. Global Change Biology, 2020, 26(11): 6116-6133.
doi: 10.1111/gcb.v26.11
|
[11] |
田成诗, 陈雨. 中国省际农业碳排放测算及低碳化水平评价——基于衍生指标与TOPSIS法的运用[J]. 自然资源学报, 2021, 36(2): 395-410.
doi: 10.31497/zrzyxb.20210210
|
|
[Tian Chengshi, Chen Yu. China’s provincial agricultural carbon emissions measurement and low carbonization level evaluation: Based on the application of derivative indicators and TOPSIS[J]. Journal of Natural Resources, 2021, 36(2): 395-410.]
doi: 10.31497/zrzyxb.20210210
|
[12] |
陈红, 王浩坤, 秦帅. 农业碳排放的脱钩效应及驱动因素分析——以黑龙江省为例[J]. 科技管理研究, 2019, 39(17): 247-252.
|
|
[Chen Hong, Wang Haokun, Qin Shuai. Analysis of decoupling effect and driving factors of agricultural carbon emission: A case study of Heilongjiang Province[J]. Science and Technology Management Research, 2019, 39(17): 247-252.]
|
[13] |
蔡育蓉, 王立刚. 北方典型农业生态系统的固碳减排路径及模式[J]. 中国生态农业学报, 2022, 30(4): 641-650.
|
|
[Cai Yurong, Wang Ligang. Carbon sequestration and greenhouse gas mitigation paths and modes in a typical agroecosystem in northern China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 641-650.]
|
[14] |
夏文浩, 王铭扬, 姜磊. 新疆农业碳排放强度时空变化趋势与收敛分析[J]. 干旱区地理, 2023, 46(7): 1145-1154.
|
|
[Xia Wenhao, Wang Mingyang, Jiang Lei. Spatiotemporal variation trends and convergence analysis of agricultural carbon emission intensity in Xinjiang[J]. Arid Land Geography, 2023, 46(7): 1145-1154.]
|
[15] |
国家统计局农村社会经济调查司. 中国农村统计年鉴2021[M]. 北京: 中国统计出版社, 2021.
|
|
Department of Rural Socio-Economic Survey, National Bureau of Statistics of China. China rural statistical yearbook 2021[M]. Beijing: China Statistics Press, 2021.]
|
[16] |
刘明达, 蒙吉军, 刘碧寒. 国内外碳排放核算方法研究进展[J]. 热带地理, 2014, 34(2): 248-258.
|
|
[Liu Mingda, Meng Jijun, Liu Bihan. Research progress of carbon emission accounting methods at home and abroad[J]. Tropical Geography, 2014, 34(2): 248-258.]
|
[17] |
Aliyu G, Luo J, Di H, et al. Nitrous oxide emissions from China’s croplands based on regional and crop-specific emission factors deviate from IPCC 2006 estimates[J]. Science of the Total Environment, 2019, 669: 547-558.
doi: 10.1016/j.scitotenv.2019.03.142
|
[18] |
Sook J E, Hak Y S, Back C S, et al. Application of 2006 IPCC guideline to improve greenhouse gas emission estimation for livestock agriculture[J]. Journal of Animal Environmental Science, 2012, 18(2): 75-84.
|
[19] |
Liu D, Xiao B. Can China achieve its carbon emission peaking? A scenario analysis based on STIRPAT and system dynamics model[J]. Ecological Indicators, 2018, 93: 647-657.
doi: 10.1016/j.ecolind.2018.05.049
|
[20] |
Ehrlich P R, Holdren J P. Impact of population growth: Complacency concerning this component of man’s predicament is unjustified and counterproductive[J]. Science, 1971, 171(3977): 1212-1217.
pmid: 5545198
|
[21] |
张乐勤, 陈素平, 王文琴, 等. 安徽省近15年建设用地变化对碳排放效应测度及趋势预测——基于STIRPAT 模型[J]. 环境科学学报, 2013, 33(3): 950-958.
|
|
[Zhang Leqin, Chen Suping, Wang Wenqin, et al. Measurement and trend analysis of carbon emissions from construction land changes in Anhui in the recent 15 years: Based on STIRPAT model[J]. Acta Scientiae Circumstantiae, 2013, 33(3): 950-958.]
|
[22] |
York R, Rosa E A, Dietz T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts[J]. Ecological Economics, 2003, 46(3): 351-365.
doi: 10.1016/S0921-8009(03)00188-5
|
[23] |
黄晓慧, 杨飞. 碳达峰背景下中国农业碳排放测算及其时空动态演变[J]. 江苏农业科学, 2022, 50(14): 232-239.
|
|
[Huang Xiaohui, Yang Fei. Calculation and spatiotemporal dynamic evolution of agricultural carbon emissions in China under the background of carbon peak[J]. Jiangsu Agricultural Sciences, 2022, 50(14): 232-239.]
|
[24] |
胡婉玲, 张金鑫, 王红玲. 中国种植业碳排放时空分异研究[J]. 统计与决策, 2020, 36(15): 92-95.
|
|
[Hu Wanling, Zhang Jinxin, Wang Hongling. Research on the spatial and temporal variation of carbon emissions of China’s planting industry[J]. Statistics and Decision, 2020, 36(15): 92-95.]
|
[25] |
苏洋, 马惠兰, 李凤. 新疆农牧业碳排放及其与农业经济增长的脱钩关系研究[J]. 干旱区地理, 2014, 37(5): 1047-1054.
|
|
[Su Yang, Ma Huilan, Li Feng. Xinjiang agriculture and animal husbandry carbon emissions and its decoupling relationship with agricultural economic growth[J]. Arid Land Geography, 2014, 37(5): 1047-1054.]
|
[26] |
方苗, 贺义雄, 余晓洋. 农业碳排放研究: 空间格局、脱钩效应及驱动因素——以浙江省为例[J]. 资源开发与市场, 2022, 38(12): 1461-1467, 1528.
|
|
[Fang Miao, He Yixiong, Yu Xiaoyang. Agricultural carbon emissions: Spatial pattern, decoupling effect and driving factors taking Zhejiang Province as an example[J]. Resource Development & Market, 2022, 38(12): 1461-1467, 1528.]
|
[27] |
桂河, 李静, 尚梦媛. “双碳”背景下的宁夏农业碳排放时序特征、驱动机理与脱钩效应研究[J]. 中南林业科技大学学报(社会科学版), 2021, 15(6): 37-44.
|
|
[Gui He, Li Jing, Shang Mengyuan. Study on temporal characteristics, driving mechanism and decoupling effect of agricultural carbon emission in Ningxia under the background of “double carbon”[J]. Journal of Central South University of Forestry & Technology (Social Sciences Edition), 2021, 15(6): 37-44.]
|