Earth Information Sciences

Spatio-temporal evolution and attribution analysis of human effects of vegetation cover on the Loess Plateau from 2001 to 2018

Expand
  • 1. Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Modeling,Baoji University of Arts and Sciences, Baoji 721013,Shaanxi, China
    2. School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
    3. College of Geography and Tourism, Chongqing Key Laboratory of GIS Application, Chongqing Normal University, Chongqing 400047, China
    4. Guangxi Yicheng Blueprint Technology Co., Ltd., Nanning 530007, Guangxi, China
    5. School of civil Engineering, Xi’an Institute of Transportation Engineering, Xi’an 710065, Shaanxi, China
    6. Shaanxi Climate Center, Xi’an 710015, Shaanxi, China

Received date: 2019-12-08

  Revised date: 2020-08-04

  Online published: 2021-03-09

Abstract

The Loess Plateau is one of the four major plateaus in China. It is the most concentrated and largest Loess area on earth, but fragile ecology, which feeds 8.5% of China’s population with 6.7% of the land. The long-term population and economic development pressure have caused severe regional ecosystem degradation. Since the implementation of the project of returning farmland to forest and grassland in 1999, the vegetation construction acceleration has led to significant improvements in the ecological environment. However, the man-made factors and the influence rules of vegetation cover changes on the Loess Plateau still lack several quantitative demonstrations. Therefore, strengthening the quantitative analysis of the human impact on the regional ecological environment will not only promote accurate ecological restoration, but also promotes the construction of human stability, harmony, and happy life, which has important theoretical and practical significance. Based on the MODIS-NDVI and MODIS-LST from 2001 to 2018, as well as various humanistic and social data, such as land use, transportation, and population, this paper constructs the Temperature Vegetation Dryness Index (TVDI) to reflect the soil moisture status of the Loess Plateau. The residual method is used to remove soil moisture to express the manmade influence of vegetation cover. The spatiotemporal evolution pattern of the man-made influence is analyzed with trend analysis and the Hurst index. We tend to explore the effect degree of various human factors, influence direction, and their temporal changes on vegetation coverage with geographic detectors and correlation analysis methods on the Loess Plateau. It is hoped to determine the man-made leading factors affecting the vegetation cover changes on the Loess Plateau, and provide a solid basis for the maintenance of the early ecological construction project and the future implementation of farmland to forest project, which will contribute to the healthy and sustainable development of the ecological environment of the Loess Plateau. The results are as follows: (1) The anthropogenic influence of vegetation cover on the Loess Plateau from 2001 to 2018 has a trend of 0.36×10-2 a-1, and the impact of human activities on vegetation cover was positive. (2) The future trend of human impact on vegetation cover will change from positive to negative on the Loess Plateau. It is worth noting that the positive effect of vegetation cover will weaken in the key implementation areas of returning farmland to forest. (3) According to the results of correlation analysis and geographical detector, the main human factors affecting vegetation cover change include high-level tourist attractions, urban distribution, transportation, and land use. (4) The future implementation and maintenance of the returning farmland to forest project should pay attention to reinforce ecological construction at the same time as urban economic development, reduce the harm of traffic industry to the ecological environment, strengthen the development of green tourism and slow down the impact of human activities, such as land change.

Cite this article

ZHANG Chong,BAI Ziyi,LI Xuemei,RAN Qiqi,WEI Zhenfeng,LEI Tianwang,WANG Na . Spatio-temporal evolution and attribution analysis of human effects of vegetation cover on the Loess Plateau from 2001 to 2018[J]. Arid Land Geography, 2021 , 44(1) : 188 -196 . DOI: 10.12118/j.issn.1000–6060.2021.01.20

References

[1] 成德宁. 城市化与经济发展: 理论、模式与政策[M]. 北京: 科学出版社, 2004.
[1] [ Cheng Dening. Urbanization and economic development: Theory, model and policy[M]. Beijing: Science Press, 2004. ]
[2] 段禄峰, 田宇轩, 魏明. 我国城镇化发展快慢问题研究[J]. 理论探索, 2016(5):102-108.
[2] [ Duan Lufeng, Tian Yuxuan, Wei Ming. Research on the speed of urbanization in China[J]. Theoretical Exploration, 2016(5):102-108. ]
[3] 徐秋艳, 房胜飞, 马琳琳. 新型城镇化、产业结构升级与中国经济增长: 基于空间溢出及门槛效应的实证研究[J]. 系统工程理论与实践, 2019,39(6):1407-1418.
[3] [ Xu Qiuyan, Fang Shengfei, Ma Linlin. New urbanization, upgrading of industrial structure and China’s economic growth: Empirical research based on spatial spillover and threshold effect[J]. Systems Engineering-Theory & Practice, 2019,39(6):1407-1418. ]
[4] 吕志强, 卿姗姗, 邓睿. 中国人口城市化与土地城市化协调性分析[J]. 城市问题, 2016(6):33-38.
[4] [ Lü Zhiqiang, Qing Shanshan, Deng Rui. Analysis on the coordination between population urbanization and land urbanization in China[J]. Urban Problems, 2016(6):33-38. ]
[5] 陈凤桂, 张虹鸥, 吴旗韬. 我国人口城镇化与土地城镇化协调发展研究[J]. 人文地理, 2010,115(5):53-58.
[5] [ Chen Fenggui, Zhang Hong’ou, Wu Qitao. A study on coordinate development between population urbanization and land urbanization in China[J]. Human Geography, 2010,115(5):53-58. ]
[6] 张戈丽, 徐兴良, 周才平. 近 30 年来呼伦贝尔地区草地植被变化对气候变化的响应[J]. 地理学报, 2011,66(1):47-58.
[6] [ Zhang Geli, Xu Xingliang, Zhou Caiping. Responses of vegetation changes to climatic variations in Hulun Buir grassland in past 30 years[J]. Acta Geographica Sinica, 2011,66(1):47-58. ]
[7] 刘宪锋, 潘耀忠, 朱秀芳. 2000—2014年秦巴山区植被覆盖时空变化特征及其归因[J]. 地理学报, 2015,70(5):705-716.
[7] [ Liu Xianfeng, Pan Yaozhong, Zhu Xiufang. Spatiotemporal variation of vegetation coverage in Qinling-Daba Mountains in relation to environmental factors[J]. Acta Geographica Sinica, 2015,70(5):705-716. ]
[8] 杨思遥, 孟丹, 李小娟. 华北地区2001—2014年植被变化对SPEI气象干旱指数多尺度的响应[J]. 生态学报, 2018,38(3):1028-1039.
[8] [ Yang Siyao, Meng Dan, Li Xiaojuan. Multi-scale responses of vegetation changes relative to the SPEI meteorological drought index in north China in 2001—2014[J]. Acta Ecologica Sinica, 2018,38(3):1028-1039. ]
[9] 王强, 张勃, 戴声佩. 三北防护林工程区植被覆盖变化与影响因子分析[J]. 中国环境科学, 2012,32(7):1302-1308.
[9] [ Wang Qiang, Zhang Bo, Dai Shengpei. Analysis of the vegetation cover change and its relationship with factors in the Three-North Shelter Forest Program[J]. China Environmental Science, 2012,32(7):1302-1308. ]
[10] 魏彦强, 芦海燕, 王金牛, 等. 近35年青藏高原植被带变化对气候变化及人类活动的响应[J]. 草业科学, 2019,36(4):1163-1176.
[10] [ Wei Yanqiang, Lu Haiyan, Wang Jinniu. Responses of vegetation zones, in the Qinghai-Tibetan Plateau, to climate change and anthropogenic influences over the last 35 years[J]. Pratacultural Science, 2019,36(4):1163-1176. ]
[11] 王建邦, 赵军, 李传华. 2001—2015年中国植被覆盖人为影响的时空格局[J]. 地理学报, 2019,74(3):504-519.
[11] [ Wang Jianbang, Zhao Jun, Li Chuanhua. The spatial-temporal patterns of the impact of human activities on vegetation coverage in China from 2001 to 2015[J]. Acta Geographica Sinica, 2019,74(3):504-519. ]
[12] 张照男, 祁应军, 张杨. 基于残差趋势法的赤峰市植被变化的人为影响研究[J]. 生态经济, 2018,34(9):206-211.
[12] [ Zhang Zhaonan, Qi Yingjun, Zhang Yang. Study of human influence on Chifeng vegetation change based on residual trend method[J]. Ecological Economy, 2018,34(9):206-211. ]
[13] 马启民, 贾晓鹏, 王海兵. 气候和人为因素对植被变化影响的评价方法综述[J]. 中国沙漠, 2019,39(6):1-8.
[13] [ Ma Qimin, Jia Xiaopeng, Wang Haibing. Recent advances in driving mechanisms of climate and anthropogenic factors on vegetation change[J]. Journal of Desert Research, 2019,39(6):1-8. ]
[14] Evans J, Geerken R. Discrimination between climate and human induced dryland degradation[J]. Journal of Arid Environments, 2004,57(4):535-554.
[15] Wessels K, Prince S, Malherbe J. Can human-induced land degradation be distinguished from the effects of rainfall variability: A case study in South Africa[J]. Journal of Arid Environments, 2007,68(2):271-297.
[16] 李晓光, 刘华民, 王立新. 鄂尔多斯高原植被覆盖变化及其与气候和人类活动的关系[J]. 中国农业气象, 2014,35(4):470-476.
[16] [ Li Xiaoguang, Liu Huamin, Wang Lixin. Vegetation cover change and its relationship between climate and human activities in Ordos Plateau[J]. Chinese Journal of Agrometeorology, 2014,35(4):470-476. ]
[17] Mueller T, Dressler G, Tucker C. Human land-use practices lead to global long-term increases in photosynthetic capacity[J]. Remote Sensing, 2014,6(6):5717-5731.
[18] Liu Y, Li Y, Li S C. Spatial and temporal patterns of global NDVI trends: Correlations with climate and human factors[J]. Remote Sensing, 2015,7(10):13233-13250.
[19] Sanderson E, Levy M, Redford K. The human footprint and the last of the wild[J]. Bioscience, 2002,52(10):891-904.
[20] Chen A F, Li R Y, Wang H L. Quantitative assessment of human appropriation of aboveground net primary production in China[J]. Ecological Modelling, 2015,312(24):54-60.
[21] Andersen C, Donovan R, Quinn J. Human appropriation of net primary production (HANPP) in an agriculturally-dominated watershed, southeastern USA[J]. Land, 2015,4(2):513-540.
[22] Plutzar C, Kroisleitner C, Haberl H. Changes in the spatial patterns of human appropriation of net primary production in Europe 1990—2006[J]. Regional Environmental Change, 2016,16(5):1225-1238.
[23] 白子怡, 薛亮, 薛东前. 关中-天水经济区人类活动对植被覆盖变化的影响[J]. 中国农业大学学报, 2020,25(2):151-159.
[23] [ Bai Ziyi, Xue Liang, Xue Dongqian. Impact of human activities on the vegetation cover change in Guanzhong-Tianshui economic zone[J]. Journal of China Agricultural University, 2020,25(2):151-159. ]
[24] 邓晨晖, 白红英, 高山. 秦岭植被覆盖时空变化及其对气候变化与人类活动的双重响应[J]. 自然资源学报, 2018,33(3):425-438.
[24] [ Deng Chenhui, Bai Hongying, Gao Shan. Spatial-temporal variation of the vegetation coverage in Qinling Mountains and its dual response to climate change and human activities[J]. Journal of Natural Resources, 2018,33(3):425-438. ]
[25] 于璐, 武志涛, 杜自强, 等. 气候变化背景下京津风沙源区人类活动对植被影响的量化分析[J]. 应用生态学报, 2020,31(6):2007— 2014.
[25] [ Yu Lu, Wu Zhitao, Du Ziqiang. Quantitative analysis of the effects of human activities on vegetation in the Beijing-Tianjin sandstorm source region under the climate change[J]. Chinese Journal of Applied Ecology, 2020,31(6):2007-2014. ]
[26] 王巨. 基于时序NDVI植被变化检测与驱动因素量化方法研究[D]. 兰州: 兰州大学, 2020.
[26] [ Wang Ju. Methods for detecting vegetation changes and quantifying the driving factors using NDVI time series by taking Hexi as a case area[D]. Lanzhou: Lanzhou University, 2020. ]
[27] 白天路. 基于遥感和地面实测水分数据的小流域土壤水分模拟[D]. 西安: 西北大学, 2010.
[27] [ Bai Tianlu. Soil moisture simulation based on remote sensing and ground data in watershed[D]. Xi’an: Northwest University, 2010. ]
[28] 郭继凯, 吴秀芹, 董贵华. 基于MODIS/NDVI的塔里木河流域植被覆盖变化驱动因素相对作用分析[J]. 干旱区研究, 2017,34(3):621-629.
[28] [ Guo Jikai, Wu Xiuqin, Dong Guihua. Vegetation coverage change and relative effects of driving factors based on MODIS/NDVI in the Tarim River Basin[J]. Arid Zone Research, 2017,34(3):621-629. ]
[29] 阿荣, 毕其格, 董振华. 基于MODIS/NDVI的锡林郭勒草原植被变化及其归因[J]. 资源科学, 2019,41(7):1374-1386.
[29] [ A Rong, Bi Qige, Dong Zhenhua. Change of grassland vegetation and driving factors based on MODIS/NDVI in Xilingol, China[J]. Resources Science, 2019,41(7):1374-1386. ]
[30] 易浪, 任志远, 张翀. 黄土高原植被覆盖变化与气候和人类活动的关系[J]. 资源科学, 2014,36(1):166-174.
[30] [ Yi Lang, Ren Zhiyuan, Zhang Chong. Vegetation cover, climate and human activities on the Loess Plateau[J]. Resources Science, 2014,36(1):166-174. ]
[31] 刘立文, 张吴平, 段永红. TVDI模型的农业旱情时空变化遥感应用[J]. 生态学报, 2014,34(13):3704-3711.
[31] [ Liu Liwen, Zhang Wuping, Duan Yonghong. Terrain corrected TVDI for agricultural drought monitoring using MODIS data[J]. Acta Ecologica Sinica, 2014,34(13):3704-3711. ]
[32] Patel N R, Anapashsha R, Kumar S, et al. Assessing potential of MODIS derived temperature/vegetation condition index (TVDI) to infer soil moisture status[J]. International Journal of Remote Sensing, 2009,30(1):23-39.
[33] 宋春桥, 游松财, 刘高焕. 基于TVDI的藏北地区土壤湿度空间格局[J]. 地理科学进展, 2011,30(5):570-576.
[33] [ Song Chunqiao, You Songcai, Liu Gaohuan. The spatial pattern of soil moisture in northern Tibet based on TVDI method[J]. Progress in Geography, 2011,30(5):570-576. ]
[34] 邸兰杰, 王卫, 成贺玺. 基于ATI和TVDI模型的河北平原土壤湿度遥感反演[J]. 中国生态农业学报, 2014,22(6):737-743.
[34] [ Di Lanjie, Wang Wei, Cheng Hexi. Remote sensing inversion of soil moisture in Hebei Plain based on ATI and TVDI models[J]. Chinese Journal of Eco-Agriculture, 2014,22(6):737-743. ]
[35] 杨桂燕, 李路, 陈和. 基于广义Whittaker平滑器的拉曼光谱基线校正方法[J]. 中国激光, 2015,42(9):360-368.
[35] [ Yang Guiyan, Li Lu, Chen He. Baseline correction method for Raman spectra based on generalized Whittaker smoother[J]. Chinese Journal of Lasers, 2015,42(9):360-368. ]
[36] Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment. 2002,79(2-3), 213-224.
[37] 黄森旺. 三北防护林工程区土地退化的时空变化和驱动力分析[D]. 阜新: 辽宁工程技术大学, 2012.
[37] [ Huang Senwang. The distribution and drixer anlysis of land degradation in the Three-North Shelter Forest region of China[D]. Fuxin: Liaoning Technical University, 2012. ]
[38] 王佃来, 刘文萍, 黄心渊. 基于Sen+Mann-Kendall的北京植被变化趋势分析[J]. 计算机工程与应用, 2013,49(5):13-17.
[38] [ Wang Dianlai, Liu Wenping, Huang Xinyuan. Trend analysis in vegetation cover in Beijing based on Sen+Mann-Kendall method[J]. Computer Engineering and Applications, 2013,49(5):13-17. ]
[39] Feng D R, Wang J M, Fu M C, et al. Spatiotemporal variation and influencing factors of vegetation cover in the ecologically fragile areas of China from 2000 to 2015: A case study in Shaanxi Province[J]. Environmental Science and Pollution Research, 2019,26(28):977-992.
[40] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017,72(1):116-134.
[40] [ Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017,72(1):116-134. ]
Outlines

/