Mineral quantitative analysis of Mu Us Sandy Land with QEMSCAN

Expand
  • School of Geography and Tourism, Shaanxi Normal University, Xi’an 710062, Shaanxi, China

Received date: 2019-12-24

  Revised date: 2020-04-01

  Online published: 2020-11-25

Abstract

The quantitative analysis of mineral experiments with Czech FEI company MLA650F mineral liberation analyzer, use the MLA original sample method and MLA heavy mineral method to analyze the mineral composition in the southwest and southeast of Mu Us Sandy Land in Shaanxi Province and Inner Mongolia Autonomous Region, China. Results show that MLA650F have good repeatability and high accuracy, and the mineral types measured are richer than those measured using the optical microscope. However, unlike the optical microscope, it cannot directly provide the original color, shape, transparency, luster, surface fracture, and other characteristics of the mineral. Although the individual mineral content and the mineral analysis index measured by QEMSCAN and optical microscope have some differences, the mineral change trend is basically the same. It is concluded that the main light minerals in Mu Us Sandy Land are quartz-feldspar and the heavy minerals are hornblende-garnet. In addition, QEMSCAN and optical microscope show similar change trend of mineral analysis indexes of the same sample. The original sample method of MLA is consistent with the Q/TF and ATi indexes of the optical microscope and with the CIA indexes of chemical weathering. Results showed that the weathering in the southwest of Mu Us Sandy Land was stronger than that in the southeast. Although both QEMSCAN and optical microscope can reflect the sedimentary environment, in practice, it should be noted that the data used should be established in the same measurement system, and the experimental data measured by different laboratories or experimental methods should be carefully quoted.

Cite this article

CUI Ying-ying, ZHOU Ya-li, CHEN Guo-xiang, HUANG Chun-chang, PANG Jiang-Li, YANG Jun-min, YAN Xue-jiao . Mineral quantitative analysis of Mu Us Sandy Land with QEMSCAN[J]. Arid Land Geography, 2020 , 43(6) : 1505 -1513 . DOI: 10.12118/j.issn.1000-6060.2020.06.11

References

[1] 赵红格, 刘池洋. 物源分析方法及研究进展[J]. 沉积学报, 2003, 21(3): 409- 415. [ZHAO Hongge, LIU Chiyang. Approaches and prospects of provenance analysis[J]. Acta Sedimentologica Sinica, 2003, 21(3): 409-415. ] [2] 姜在兴. 沉积学[M]. 北京: 石油工业出版社, 2003: 46-54. [JI⁃ ANG Zaixing. Sedimentology[M]. Beijing: Petroleum Industry Press, 2003: 46-54. ] [3] 高文华, 高抒, 王丹丹, 等. 废黄河沉积记录中来自不同河流物 质的信息——基于重矿物与地球化学元素分析[J]. 地理科学, 2015, 35(12): 1631-1639. [GAO Wenhua, GAO Shu, WANG Dan⁃ dan, et al. Sediment source information of different catchments in the sedimentary records of the abandoned Yellow River: Heavy mineral and geochemical analysis[J]. Scientia Geographica Sinica, 2015, 35(12): 1631-1639. ] [4] 宋天锐. 重砂矿物分选及鉴定[M]. 北京: 地质出版社, 1987: 16- 123. [SONG Tianrui. Identification of heavy placer minerals[M]. Beijing: Geology Press, 1987: 16-123. ] [5] SEVERIN K P. Energy dispersive spectrometry of common rock forming minerals[M]. Netherland: Springer, 2007: 1-2. [6] 董治宝. 库姆塔格沙漠风沙地貌[M]. 北京: 科学出版社, 2011: 100- 112. [DONG Zhibao. Sand and wind in the Kumtag Desert [M]. Beijing: Science Press, 2011: 100-112. ] [7] 马冀, 岳乐平, 杨利荣, 等. 毛乌素沙漠东南缘全新世剖面光释 光 年 代 及 古 气 候 意 义 [J]. 第 四 纪 研 究, 2011, 31(1): 120- 129. [MA Ji, YUE Leping, YANG Lirong, et al. OSL dating of Holocene sequence and palaeoclimate change record in southeastern margin of Mu Us Desert, north China[J]. Quaternary Sciences, 2011, 31 (1): 120-129. ] [8] 王陇, 高广磊, 张英, 等. 毛乌素沙地风沙土粒径分布特征及其 影 响 因 素 [J]. 干 旱 区 地 理, 2019, 42(5): 1003- 1010. [WANG Long, GAO Guanglei, ZHANG Ying, et al. Particle size distribu⁃ tion of aeolian soils in the Mu Us Sandy Land and the influence factors[J]. Arid Land Geography, 2019, 42(5): 1003-1010. ] [9] 杨思全, 王薇. 毛乌素沙地土地沙漠化评价[J]. 干旱区地理, 2010, 33(2): 258-262. [YANG Siquan, WANG Wei. Evaluation of desertification in Mu Us Sandy Land[J]. Arid Land Geography, 2010, 33(2): 258-262. ] [10] LANCASTER N. The Namib sand sea: Dunes forms, processes and sediments[M]. Rotterdam: Balkema, 1989. [11] 马收先, 孟庆任, 曲永强. 轻矿物物源分析研究进展[J]. 岩石学 报, 2014, 30(2): 597- 608. [MA Shouxian, MENG Qingren, QU Yongqiang. Development on provenance analysis of light minerals [J]. Acta Petrologica Sinica, 2014, 30(2): 597-608. ] [12] 王昆山, 石学法, 姜晓黎. 南黄海沉积物的来源及分区: 来自轻 矿物的证据[J]. 科学通报, 2001(S1): 26-31. [WANG Kunshan, SHI Xuefa, JIANG Xiaoli. Sources and provinces of sediments in South Yellow Sea: Evidence from light minerals[J]. Chinese Sci⁃ ence Bulletin, 2001(S1): 26-31. ] [13] 王秋良, 胡思辉, 李长安. 周老镇钻孔砾石层重矿物特征及地质 意义[J]. 中国地质, 2009, 36(4): 878-884. [WANG Qiuliang, HU Sihui, LI Chan’an. Heavy mineral characteristics of gravel layers in the Zhoulao Town borehole[J]. Geology in China, 2009, 36(4): 878-884. ] [14] MORTON A C. HALLSWORTH C R. Identifying provenance-spe⁃ cific features of detrital heavy mineral assemblages in sandstones [J]. Sedimentary Geology, 1994, 90(3-4): 241-256. [15] HUBERT JF. A zircon-tourmaline-rutile maturity index and the in⁃ terdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones[J]. Journal of Sedimentary Research, 1962, 32(3): 440-450. [16] MORTON A C, HALLSWORTH C R, BAHLBURG H, et al. Pro⁃ cesses controlling the composition of heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1999, 124(1-4): 3-29. [17] NESBITT H W, YOUNG G M. Early proterozoic climates and platemotions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(21): 715-717. [18] NESBIT H W, YOUNG G M. Formation and diagenesis of weather⁃ ing profiles[J]. The Journal of Geology, 1989, 97(2): 129-147. [19] 秦作栋, 翟颖倩, 杨永刚, 等. 汾河源区不同景观带表土粒度与 地球化学元素组成分析[J]. 干旱区地理, 2017, 40(1): 62-69. [QIN Zuodong, ZHAI Yingqian, YANG Yonggang , et al. Topsoil particle size and geochemical elements in the different landscape zone in Fenhe River headwater catchment[J]. Arid Land Geogra⁃ phy, 2017, 40(1): 62-69. ]
Outlines

/