Simulating the biomass carbon distribution of young-and-middle aged Picea crassifolia forests based on FAREAST model along altitude gradients

Expand
  • 1 College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056000, Hebei, China; 2 State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, Gansu, China; 3 Institute of Arid Meteorological Lanzhou, CMA, Key Laboratory of Arid Climate Change and Reducing Disaster of Gansu Province, Lanzhou 730020, Gansu, China, 4 Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing 100875, China

Received date: 2019-06-06

  Revised date: 2019-09-25

  Online published: 2020-09-25

Abstract

Picea crassifolia is a dominant tree species of the forests in northwestern China’s Qilian Mountains, where it plays important roles in carbon cycling, carbon storage, and various ecosystem services such as water retention and sand fixation. However, the forest area of P. crassifolia continues to shrink because of irresponsible usage of forest resources, which is resulting in reduced ecological service function. Thus, it is necessary to restore the P. crassifolia forest area. Because of the loads of important information that can be provided by the distribution of biomass carbon of P. crassifolia seedlings and saplings along altitude gradients, it is crucial to understand the distribution of the region’s youngandmiddle- aged (0- 60 aged) P. crassifolia forests to successfully implement restoration and conservation programs. In this study, an updated forest gap model, FAREAST, is used to simulate the distribution of biomass carbon of youngand middle- aged P. crassifolia forests along altitude gradients in the western (Qifeng set), eastern (Wushaoling set), and central (Tianlaochi set) Qilian Mountains. The FAREAST model is validated for these sets against survey data. The results of the study are as follows. (1) The biomass carbon of P. crassifolia seedlings and saplings is greatest at medium altitude, i.e.,2 800 – 3 100 m a.s.l.; however, biomass carbon decreases beyond this range. (2) The average biomass carbon of P. crassifolia seedlings and saplings reaches 27.48 ± 5.51 t · C · hm- 2 in the Tianlaochi set, followed by 24.56 ± 3.50 t · C · hm- 2 in the Qifeng set and 23.80 ± 2.07 t · C · hm- 2 in the Wshaoling set. (3) The highest altitude for distribution of biomass carbon of P. crassifolia seedlings and saplings across the Qilian Mountains is 3 400 m a.s.l. and the lowest is2,500 m a.s.l.. The biomass carbon of P. crassifolia seedlings and saplings is higher in the central Qilian Mountains than in the eastern and western parts, which suggests that the central part is optimal for regeneration of P. crassifolia. The results from the study show that the FAREAST forest gap model can be used to inform forest management and ecosystem services function in this region.

Cite this article

WANG Qing-tao, ZHAO Chuan-yan, WANG Xiao-ping, HU Shan-shan, LIU Mei-yan, SHI Wen-yu, WANG Xiao-yu, SHAN Wen-rong . Simulating the biomass carbon distribution of young-and-middle aged Picea crassifolia forests based on FAREAST model along altitude gradients[J]. Arid Land Geography, 2020 , 43(5) : 1316 -1326 . DOI: 10.12118/j.issn.1000-6060.2020.05.17

References

[1] CAO M, WOODWARD F I. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change[J]. Global Change Biology, 1998, 4: 185-198. [2] FOSTER A C, SHUMAN J K, SHUGART H H, et al. Validation and application of a forest gap model to the southern Rocky Moun⁃ tains[J]. Ecological Modeling, 2017, 351: 109-128. [3] 赵苗苗, 赵娜, 刘羽, 等. 森林碳计量方法研究进展[J]. 生态学 报, 2019, 39(11): 1-11. [ZHAO Miaomiao, ZHAO Na, LIU Yu, et al. An overview of forest carbon measurement methods[J]. Acte Ecological Sinica, 2019, 39(11): 1-11. ] [4] ZHANG N N, SHUGART H H, YAN X D. Simulating the effects of climate changes on eastern eurasia forests[J]. Climatic Change, 2009, 95: 341-361. [5] 贺鹏, 张会儒, 雷相东, 等. 基于地统计学的森林地上生物量估 计 [J]. 2013, 林 业 科 学, 49(5): 101- 109. [HE Peng, ZHANG Huiru, LEI Xiangdong, et al. Estimation of forest above- ground biomass based on geostatistics[J]. Scientia Silvae Sinicae, 2013, 49 (5): 101-109. ] [6] 丛俊霞, 郑晓, 朱教君, 等. 沙地樟子松天然林地上碳储量估算 及其空间分布特征[J]. 生态学杂志, 2017, 36(11): 2997-3007. [CONG Junxia,ZHENG Xiao, ZHU Jiaojun, et al. Estimation and spatial distribution of aboveground carbon storage for natural Pinus sylvestris var. mongolica forests on sandy land[J]. Chinese Journal of Ecology, 2017, 36(11): 2997-3007. ] [7] FANG J Y, CHEN A P, PENG C H, et al. Changes in forest bio⁃ mass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292(5525): 2320-2322. [8] 李海奎, 赵鹏祥, 雷渊才, 等. 基于森林清查资料的乔木林生物 量估算方法的比较[J]. 林业科学, 2012, 48(5): 44-52. [LI Hai⁃ kui, ZHAO Pengxiang, LEI Yuancai, et al. Comparison on estima⁃ tion of wood biomass using forest inventory data[J]. Scientia Silvae Sinicae, 2012, 48(5): 44-52. ] [9] 左舒翟, 任引, 王效科, 等. 中国杉木林生物量估算参数及其影 响因素[J]. 林业科学, 2014, 5(11): 1-12. [ ZUO Shuqu, RēN Yin, WANG Xiaoke, et al. Biomass estimation factors and their deter⁃ minants of Cunninghamia lanceolata forests in China[J]. Scientia Silvae Sinicae, 2014, 5(11): 1-12. ] [10] 傅伯杰, 赵文武, 陈利顶. 地理-生态过程研究的进展与展望[J]. 地理学报, 2006, 61(11): 1123-1131. [ FU Bojie, ZHAO Wenwu, CHEN Liding. Progress and perspective of geogr- aphical- ecologi⁃ cal processes[J]. Acta Geographical Sinica, 2006, 61(11): 1123- 1131. ] [11] YAN XD, SHUGART HH. FAREAST: A forest gap model to simu⁃ late dynamics and patterns of eastern Eurasian forests[J]. Journal of Biogeography, 2005, 32: 1641-1658. [12] FISCHER R, BOHN F, PAULA M D D, et al. Lessons learned from applying a forest gap model to understand ecosystem and car⁃ bon dynamics of complex tropical forests[J]. Ecological Modeling, 2016, 326:124-133. [13] HU S S, MA J Y, SHUGART H H, et al. Evaluating the impacts of slope aspect on forest dynamic succession in Northwest China based on FAREAST model[J]. Environmental Research Letters, 2018,13(3): 12-14. [14] SHAO G F, SCHALL P, WEISHAMPEL J F. Dynamic simulations of mixed broadleaved Pinus koraiensis forests in the Changbaishan Biosphere Reserve of China[J]. Forest Ecology and Management, 1994, 70: 169-181. [15] YAN X D, FU C B, SHUGART H H. Simulating the effect of cli⁃ mate change on Xiaoxing’an Mountain forests[J]. Chinese Journal of Plant Ecology, 2000, 24: 327-334. [16] 延晓冬, 赵士洞, 于振良. 中国东北森林生长演替模拟模型及其 在全球变化研究中的应用[J]. 植物生态学报, 2000, 24(1): 1-8. [YAN Xiaodong, ZHAO Shidong, YU Zhenliang. Modeling growth and succession of northeastern China forests and its applications global change studies[J]. Acta Phytoecologica Sinica, 2000, 24(1): 1-8.] [17] ZHAO C Y, NAN Z R, CHENG G D, et al. GIS-assisted modeling of the spatial distribution of Qinghai spruce (Picea crassifolia) in the Qilian Mountains, northwestern China based on biophysical pa⁃ rameters[J]. Ecological Modeling, 2006, 191: 487-500. [18] 彭守璋, 赵传燕, 郑祥霖, 等. 祁连山青海云杉林生物量和碳储 量 空 间 分 布 特 征 [J]. 应 用 生 态 学 报, 2011, 22(7): 1689- 1694. [PENG Shouzhang, ZHAO Chuanyan, ZHENG Xianglin, et al. Spa⁃ tial distribution characteristics of the biomass and carbon storage of Qinghai spruce (Picea crassifolia) forests in Qilian Mountains [J]. Chinese Journal of Applied Ecology, 2011, 22(7): 1689-1694.] [19] WANG Q T, ZHAO C Y, GaAO C C, et al. Effects of environmen⁃ tal variables on seedling- sapling distribution of Qinghai spruce (Picea crassifolia) along altitudinal gradients[J]. Forest Ecology and Management, 2017, 384: 54-64. [20] 郭铌, 杨兰芳, 李民轩. 利用气象卫星资料研究祁连山区植被和 积 雪 变 化 [J]. 应 用 气 象 学 报, 2003,14(6): 700- 707. [GUO Ni, YANG Lanfang, LI Minxuan. Study of changes of vegetation and snow area in Qilian Mountains using meteorology satellite data[J]. Journal of Applied Meteorological Science, 2003,14(6): 700-707. ] [21] 别强, 赵传燕, 强文丽, 等. 祁连山自然保护区青海云杉林近四 十年动态变化分析[J]. 干旱区资源与环境, 2013, 27(4): 176- 180. [BIE Qiang, ZHAO Chuanyan, QIANG Wenli, et al. Dynamic change of Picea crassfolia in Qilian Mountain in recent 40 years [J]. Journal of Arid Land Resources and Environment, 2013, 27 (4): 176-180. ] [22] PENG S Z, ZHAO C Y, XU Z L. Modeling stem volume growth of Qinghai spruce (Picea crassifolia Kom.) in Qilian Mountains of northwest China[J]. Scandinavian Journal of Forest Research, 2015, 30: 449-457. [23] 赵传燕, 别强, 彭焕华. 祁连山北坡青海云杉林生境特征分析 [J]. 地 理 学 报, 2010, 65(1): 113- 121. [ZHAO Chuanyan, BIE Qiang, PENG Huanhua. Analysis of the niche space of Picea crassifolia on the northern slope of Qilian Mountains[J]. Acta of Geographica Sinica, 2010, 65(1): 113-121. ] [24] 李文娟, 黄力平, 赵传燕, 等. 黑河上游天涝池流域典型灌木生 态 参 数 研 究 [J]. 干 旱 区 地 理, 2018, 41(5): 175- 181. [LI Wen⁃ juan, HUANG Liping, ZHAO Chuanyan, et al. Ecological parame⁃ ters of a typical shrub in Tiaolaochi catchment in the upper reach of Heihe River[J]. Arid Land Geography, 2018, 41(5): 175-181. ] [25] SHUYGART H H. A theory of forest dynamics[M]. New York: Springer Press, 1984: 20-89. [26] BOTKIN D B. Forest dynamics: an ecological model[M]. Oxford: Oxford University Press, 1993:145-201. [27] BOTKIN D B, JAMES F J, JAMES R W. Some ecological conse⁃ quences of a computer model of forest growth[J]. Journal of Ecolo⁃ gy, 1972, 60: 849-872. [28] LEEMANS R, PRENTICE I C. FORSKA: A general forest succes⁃ sion[M]. Uppsala: Model Institute of Ecological Botany Press, 1989: 1-70. [29] SHINOZAKI K, YODA K, HOZUMI K, et al. A quantitative analy⁃ sis of plant form-the pipe model theory. I. Basic analysis[J]. Japa⁃ nese Journal of Ecology, 1964, 14: 97-105. [30] BARTELINK H H. Radiation interception by forest trees: A simu⁃ lation study on effects of stand density and foliage clustering on ab⁃ sorption and transmission[J]. Ecological Modelling, 1998, (105): 213-225. [31] URBAN D L, BONAN G B, SMITH T M, et al. Spatial applications of gap models[J]. Forest Ecology and Management, 1991, (42): 95- 110. [32] URBAN D L, SHUGART H H. Individual- based models of forest succession. Plant succession: theory and prediction[M]. London: Chapman and Hall Press, 1992: 89-152. [33] POST WM, PASTOR J. Linkages: An individual-based forest eco⁃ system model[J]. Climatic Change, 1996, 34: 253-261. [34] 刘兴聪. 青海云杉[M]. 兰州: 兰州大学出版社, 1992:35-156. [LIU Xingcong. Picea crassifolia[M]. Lanzhou: Lanzhou University Press, 1992: 35-156. ] [35] 金铭, 李毅, 刘贤德,等. 祁连山青海云杉林空间结构分析[J].干 旱区地理, 2012, 35(4): 587-593. [JIN Ming, LI Yi, LIU Xiande, et al. Spatial structure characteristic of Picea crassifolia in Qilian Mountains[J].Arid Land Geography, 2012, 35(4): 587-593. ] [36] 王金叶, 车克钧, 将志荣. 祁连山青海云杉林碳平衡研究[J]. 西 北林学院学报, 2000,15(1): 9-14. [WANG Jinye, CHE Kejun, JI⁃ ANG Zhirong. A study on carbon balance of Picea crassifolia in Qilian Mountains[J]. Journal of Northwest Forestry University, 2000,15(1): 9-14. ] [37] 李效雄, 刘贤德, 赵维俊. 祁连山大野口流域青海云杉种群结构 和空间分布格局[J]. 干旱区地理, 2012, 35(6): 960-967. [LI Xia⁃ oxiong, LIU Xiande, ZHAO Weijun. Population structure and spa⁃ tial distribution pattern of Picea crassifolia in Dayekou Basin of Qilian Mountains [J]. Arid Land Geography, 2012, 35(6): 960- 967. ] [38] 张立杰, 蒋志荣. 青海云杉种群分布格局沿海拔梯度分形特征 的变化[J]. 西北林学院学报, 2006, 21(2): 64-66. [ZHANG Ljie, JIANG Zhirong. Fractal properties of spatial pattern of Picea crassifolia population at different altitudes[J]. Journal of Northwest Forestry University, 2006, 21(2): 64-66. ] [39] 牛赟, 刘明龙, 马剑, 等. 祁连山大野口流域青海云杉林分结构 分 析 [J]. 中 南 林 业 科 技 大 学 学 报, 2014, 34(11): 23- 28. [NIU Yun, LIU Minglong, MA Jian, et al. Analysis on stand structure of Picea crassifolia forest in Dayekou basin of Qilian Mountains[J]. Journal of Central South University of Forestry and Technology, 2014, 34(11): 23-28. ] [40] WANG C, ZHAO C Y, XU Z L, et al. Effect of vegetation on soil water retention and storage in a semi-arid alpine forest catchment [J]. Journal of Arid Land, 2013, 5: 207-219. [41] 刘晶, 刘学录, 侯莉敏. 祁连山东段山地景观格局变化及其生态 脆 弱 性 分 析 [J]. 干 旱 区 地 理, 2012, 35(5): 795- 805. [LIU Jing, LIU Xuelu, HOU Limin. Changes and ecological vulnerability of landscape pattern in Eastern Qilian Mountain[J]. Arid Land Geog⁃ raphy, 2012, 35(5): 795-805. ] [42] GRIME J P. Plant strategies and vegetation processes[M]. Chiches⁃ ter: Wiley press. 1979: 123-156. [43] GRIME J P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory[J]. American Naturalist, 1977, 111: 1169-1194. [44] SMITH T M. HUSTON M. A theory of the spatial and temporal dy⁃ namics of plant communities[J]. Vegetatio, 1989, 83: 49-69. [45] SMITH T M, SHUGART H H, WOODWARD F I. Plant functional types: their relevance to ecosystem properties and global change [M]. Cambridge: Cambridge University Press, 1996: 78-105.
Outlines

/