[1] CAO M, WOODWARD F I. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change[J]. Global Change Biology, 1998, 4: 185-198. [2] FOSTER A C, SHUMAN J K, SHUGART H H, et al. Validation and application of a forest gap model to the southern Rocky Moun⁃ tains[J]. Ecological Modeling, 2017, 351: 109-128. [3] 赵苗苗, 赵娜, 刘羽, 等. 森林碳计量方法研究进展[J]. 生态学 报, 2019, 39(11): 1-11. [ZHAO Miaomiao, ZHAO Na, LIU Yu, et al. An overview of forest carbon measurement methods[J]. Acte Ecological Sinica, 2019, 39(11): 1-11. ] [4] ZHANG N N, SHUGART H H, YAN X D. Simulating the effects of climate changes on eastern eurasia forests[J]. Climatic Change, 2009, 95: 341-361. [5] 贺鹏, 张会儒, 雷相东, 等. 基于地统计学的森林地上生物量估 计 [J]. 2013, 林 业 科 学, 49(5): 101- 109. [HE Peng, ZHANG Huiru, LEI Xiangdong, et al. Estimation of forest above- ground biomass based on geostatistics[J]. Scientia Silvae Sinicae, 2013, 49 (5): 101-109. ] [6] 丛俊霞, 郑晓, 朱教君, 等. 沙地樟子松天然林地上碳储量估算 及其空间分布特征[J]. 生态学杂志, 2017, 36(11): 2997-3007. [CONG Junxia,ZHENG Xiao, ZHU Jiaojun, et al. Estimation and spatial distribution of aboveground carbon storage for natural Pinus sylvestris var. mongolica forests on sandy land[J]. Chinese Journal of Ecology, 2017, 36(11): 2997-3007. ] [7] FANG J Y, CHEN A P, PENG C H, et al. Changes in forest bio⁃ mass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292(5525): 2320-2322. [8] 李海奎, 赵鹏祥, 雷渊才, 等. 基于森林清查资料的乔木林生物 量估算方法的比较[J]. 林业科学, 2012, 48(5): 44-52. [LI Hai⁃ kui, ZHAO Pengxiang, LEI Yuancai, et al. Comparison on estima⁃ tion of wood biomass using forest inventory data[J]. Scientia Silvae Sinicae, 2012, 48(5): 44-52. ] [9] 左舒翟, 任引, 王效科, 等. 中国杉木林生物量估算参数及其影 响因素[J]. 林业科学, 2014, 5(11): 1-12. [ ZUO Shuqu, RēN Yin, WANG Xiaoke, et al. Biomass estimation factors and their deter⁃ minants of Cunninghamia lanceolata forests in China[J]. Scientia Silvae Sinicae, 2014, 5(11): 1-12. ] [10] 傅伯杰, 赵文武, 陈利顶. 地理-生态过程研究的进展与展望[J]. 地理学报, 2006, 61(11): 1123-1131. [ FU Bojie, ZHAO Wenwu, CHEN Liding. Progress and perspective of geogr- aphical- ecologi⁃ cal processes[J]. Acta Geographical Sinica, 2006, 61(11): 1123- 1131. ] [11] YAN XD, SHUGART HH. FAREAST: A forest gap model to simu⁃ late dynamics and patterns of eastern Eurasian forests[J]. Journal of Biogeography, 2005, 32: 1641-1658. [12] FISCHER R, BOHN F, PAULA M D D, et al. Lessons learned from applying a forest gap model to understand ecosystem and car⁃ bon dynamics of complex tropical forests[J]. Ecological Modeling, 2016, 326:124-133. [13] HU S S, MA J Y, SHUGART H H, et al. Evaluating the impacts of slope aspect on forest dynamic succession in Northwest China based on FAREAST model[J]. Environmental Research Letters, 2018,13(3): 12-14. [14] SHAO G F, SCHALL P, WEISHAMPEL J F. Dynamic simulations of mixed broadleaved Pinus koraiensis forests in the Changbaishan Biosphere Reserve of China[J]. Forest Ecology and Management, 1994, 70: 169-181. [15] YAN X D, FU C B, SHUGART H H. Simulating the effect of cli⁃ mate change on Xiaoxing’an Mountain forests[J]. Chinese Journal of Plant Ecology, 2000, 24: 327-334. [16] 延晓冬, 赵士洞, 于振良. 中国东北森林生长演替模拟模型及其 在全球变化研究中的应用[J]. 植物生态学报, 2000, 24(1): 1-8. [YAN Xiaodong, ZHAO Shidong, YU Zhenliang. Modeling growth and succession of northeastern China forests and its applications global change studies[J]. Acta Phytoecologica Sinica, 2000, 24(1): 1-8.] [17] ZHAO C Y, NAN Z R, CHENG G D, et al. GIS-assisted modeling of the spatial distribution of Qinghai spruce (Picea crassifolia) in the Qilian Mountains, northwestern China based on biophysical pa⁃ rameters[J]. Ecological Modeling, 2006, 191: 487-500. [18] 彭守璋, 赵传燕, 郑祥霖, 等. 祁连山青海云杉林生物量和碳储 量 空 间 分 布 特 征 [J]. 应 用 生 态 学 报, 2011, 22(7): 1689- 1694. [PENG Shouzhang, ZHAO Chuanyan, ZHENG Xianglin, et al. Spa⁃ tial distribution characteristics of the biomass and carbon storage of Qinghai spruce (Picea crassifolia) forests in Qilian Mountains [J]. Chinese Journal of Applied Ecology, 2011, 22(7): 1689-1694.] [19] WANG Q T, ZHAO C Y, GaAO C C, et al. Effects of environmen⁃ tal variables on seedling- sapling distribution of Qinghai spruce (Picea crassifolia) along altitudinal gradients[J]. Forest Ecology and Management, 2017, 384: 54-64. [20] 郭铌, 杨兰芳, 李民轩. 利用气象卫星资料研究祁连山区植被和 积 雪 变 化 [J]. 应 用 气 象 学 报, 2003,14(6): 700- 707. [GUO Ni, YANG Lanfang, LI Minxuan. Study of changes of vegetation and snow area in Qilian Mountains using meteorology satellite data[J]. Journal of Applied Meteorological Science, 2003,14(6): 700-707. ] [21] 别强, 赵传燕, 强文丽, 等. 祁连山自然保护区青海云杉林近四 十年动态变化分析[J]. 干旱区资源与环境, 2013, 27(4): 176- 180. [BIE Qiang, ZHAO Chuanyan, QIANG Wenli, et al. Dynamic change of Picea crassfolia in Qilian Mountain in recent 40 years [J]. Journal of Arid Land Resources and Environment, 2013, 27 (4): 176-180. ] [22] PENG S Z, ZHAO C Y, XU Z L. Modeling stem volume growth of Qinghai spruce (Picea crassifolia Kom.) in Qilian Mountains of northwest China[J]. Scandinavian Journal of Forest Research, 2015, 30: 449-457. [23] 赵传燕, 别强, 彭焕华. 祁连山北坡青海云杉林生境特征分析 [J]. 地 理 学 报, 2010, 65(1): 113- 121. [ZHAO Chuanyan, BIE Qiang, PENG Huanhua. Analysis of the niche space of Picea crassifolia on the northern slope of Qilian Mountains[J]. Acta of Geographica Sinica, 2010, 65(1): 113-121. ] [24] 李文娟, 黄力平, 赵传燕, 等. 黑河上游天涝池流域典型灌木生 态 参 数 研 究 [J]. 干 旱 区 地 理, 2018, 41(5): 175- 181. [LI Wen⁃ juan, HUANG Liping, ZHAO Chuanyan, et al. Ecological parame⁃ ters of a typical shrub in Tiaolaochi catchment in the upper reach of Heihe River[J]. Arid Land Geography, 2018, 41(5): 175-181. ] [25] SHUYGART H H. A theory of forest dynamics[M]. New York: Springer Press, 1984: 20-89. [26] BOTKIN D B. Forest dynamics: an ecological model[M]. Oxford: Oxford University Press, 1993:145-201. [27] BOTKIN D B, JAMES F J, JAMES R W. Some ecological conse⁃ quences of a computer model of forest growth[J]. Journal of Ecolo⁃ gy, 1972, 60: 849-872. [28] LEEMANS R, PRENTICE I C. FORSKA: A general forest succes⁃ sion[M]. Uppsala: Model Institute of Ecological Botany Press, 1989: 1-70. [29] SHINOZAKI K, YODA K, HOZUMI K, et al. A quantitative analy⁃ sis of plant form-the pipe model theory. I. Basic analysis[J]. Japa⁃ nese Journal of Ecology, 1964, 14: 97-105. [30] BARTELINK H H. Radiation interception by forest trees: A simu⁃ lation study on effects of stand density and foliage clustering on ab⁃ sorption and transmission[J]. Ecological Modelling, 1998, (105): 213-225. [31] URBAN D L, BONAN G B, SMITH T M, et al. Spatial applications of gap models[J]. Forest Ecology and Management, 1991, (42): 95- 110. [32] URBAN D L, SHUGART H H. Individual- based models of forest succession. Plant succession: theory and prediction[M]. London: Chapman and Hall Press, 1992: 89-152. [33] POST WM, PASTOR J. Linkages: An individual-based forest eco⁃ system model[J]. Climatic Change, 1996, 34: 253-261. [34] 刘兴聪. 青海云杉[M]. 兰州: 兰州大学出版社, 1992:35-156. [LIU Xingcong. Picea crassifolia[M]. Lanzhou: Lanzhou University Press, 1992: 35-156. ] [35] 金铭, 李毅, 刘贤德,等. 祁连山青海云杉林空间结构分析[J].干 旱区地理, 2012, 35(4): 587-593. [JIN Ming, LI Yi, LIU Xiande, et al. Spatial structure characteristic of Picea crassifolia in Qilian Mountains[J].Arid Land Geography, 2012, 35(4): 587-593. ] [36] 王金叶, 车克钧, 将志荣. 祁连山青海云杉林碳平衡研究[J]. 西 北林学院学报, 2000,15(1): 9-14. [WANG Jinye, CHE Kejun, JI⁃ ANG Zhirong. A study on carbon balance of Picea crassifolia in Qilian Mountains[J]. Journal of Northwest Forestry University, 2000,15(1): 9-14. ] [37] 李效雄, 刘贤德, 赵维俊. 祁连山大野口流域青海云杉种群结构 和空间分布格局[J]. 干旱区地理, 2012, 35(6): 960-967. [LI Xia⁃ oxiong, LIU Xiande, ZHAO Weijun. Population structure and spa⁃ tial distribution pattern of Picea crassifolia in Dayekou Basin of Qilian Mountains [J]. Arid Land Geography, 2012, 35(6): 960- 967. ] [38] 张立杰, 蒋志荣. 青海云杉种群分布格局沿海拔梯度分形特征 的变化[J]. 西北林学院学报, 2006, 21(2): 64-66. [ZHANG Ljie, JIANG Zhirong. Fractal properties of spatial pattern of Picea crassifolia population at different altitudes[J]. Journal of Northwest Forestry University, 2006, 21(2): 64-66. ] [39] 牛赟, 刘明龙, 马剑, 等. 祁连山大野口流域青海云杉林分结构 分 析 [J]. 中 南 林 业 科 技 大 学 学 报, 2014, 34(11): 23- 28. [NIU Yun, LIU Minglong, MA Jian, et al. Analysis on stand structure of Picea crassifolia forest in Dayekou basin of Qilian Mountains[J]. Journal of Central South University of Forestry and Technology, 2014, 34(11): 23-28. ] [40] WANG C, ZHAO C Y, XU Z L, et al. Effect of vegetation on soil water retention and storage in a semi-arid alpine forest catchment [J]. Journal of Arid Land, 2013, 5: 207-219. [41] 刘晶, 刘学录, 侯莉敏. 祁连山东段山地景观格局变化及其生态 脆 弱 性 分 析 [J]. 干 旱 区 地 理, 2012, 35(5): 795- 805. [LIU Jing, LIU Xuelu, HOU Limin. Changes and ecological vulnerability of landscape pattern in Eastern Qilian Mountain[J]. Arid Land Geog⁃ raphy, 2012, 35(5): 795-805. ] [42] GRIME J P. Plant strategies and vegetation processes[M]. Chiches⁃ ter: Wiley press. 1979: 123-156. [43] GRIME J P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory[J]. American Naturalist, 1977, 111: 1169-1194. [44] SMITH T M. HUSTON M. A theory of the spatial and temporal dy⁃ namics of plant communities[J]. Vegetatio, 1989, 83: 49-69. [45] SMITH T M, SHUGART H H, WOODWARD F I. Plant functional types: their relevance to ecosystem properties and global change [M]. Cambridge: Cambridge University Press, 1996: 78-105.