Geographical exploration of the spatial pattern of the surface-temperature and its influencing factors in western Sichuan-Plateau:A case of Xichang City

Expand
  • Institute of Geography and Resources Science,Sichuan Normal University,Chengdu 610068,Sichuan,China;Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China,Ministry of Education, Sichuan Normal University,Chengdu 610068,Sichuan,China

Received date: 2019-05-20

  Revised date: 2019-11-19

  Online published: 2020-06-16

Abstract

In this paper,the 2010 and 2015 Landsat series satellite images of Xichang City,Sichuan,China have been used.To obtain the 2010 and 2015 land use information of Xichang City,the maximum likelihood method of the supervision classification,the Google Earth high resolution images,and the GPS field verification data were utilized with the help of the “3S technology.Next,the 2010 and 2015 surface temperature of Xichang City was inversely studied by the atmospheric correction method,and the high-temperature anomaly areas were verified by the field investigation.Finally,the geographical detector technique was adopted to quantitatively analyze the influence of nine factors,such as slope,total radiation,aspect,elevation,average annual precipitation,average annual temperature,vegetation type,soil type,and land use type on surface temperature.The results showed as follows:(1) the difference of the LST spatial distribution is remarkable.(2) the effects of the influencing factors on LST are different; the influences of altitude and annual temperature are more obvious while the total radiation has the least impact.(3) the factors that influence LST interact with each other.In general,LST is enhanced linearly or nonlinearly by the interaction of influencing factors,and (4) the influencing factors have significant differences based on surface temperature.For the highest mean value of surface temperature,the ranges or types of influencing factors will be different.

Cite this article

LUO Yao, PENG Weng-fu, DONG Yong-bo, LUO Yan-mei, ZHANG Dong-mei .

Geographical exploration of the spatial pattern of the surface-temperature and its influencing factors in western Sichuan-Plateau:A case of Xichang City[J]. Arid Land Geography, 2020 , 43(3) : 738 -749 . DOI: 10.12118/j.issn.1000-6060.2020.03.20

References

[1]李召良,唐伯惠,唐荣林,等.地表温度热红外遥感反演理论与方法[J].科学观察,2017,12(6):57-59.[LI Zhaoliang,TANG Bohui,TANG Ronglin,et al.Theory and method of thermal infrared remote sensing inversion of the surface temperature[J].Science Focus,2017,12(6):57-59.] [2]孟鹏,胡勇,巩彩兰,等.热红外遥感地表温度反演研究现状与发展趋势[J].遥感信息,2012,27(6):118-123,132.[MENG Peng,HU Yong,GONG Cailan,et al.Thermal iinfrared remote sensing of surface temperature inversion: Current status and future prospects[J].Remote Sensing Information,2012,27(6):118-123,132.] [3]覃志豪,ZHANG Minghua,ARNON Karnieli,等.用陆地卫星TM6数据演算地表温度的单窗算法[J].地理学报,2001,56(4):456-466.[QIN Zhihao,ZHANG Minghua,ARNON Karnieli,et al.Mono-window algorithm for retrieving land surface temperature from Landsat TM 6 data[J].Acta Geographica Sinica,2001,56(4):456-466.] [4]WAN Z M,DOZIER J.A generalized split-window algorithm for retrieving land surface temperature from space[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34(4):892-905. [5]彭文甫,周介铭,罗怀良,等.城市土地利用与地面热效应时空变化特征的关系——以成都市为例[J].自然资源学报,2011,26(10):1738-1749.[PENG Wenfu,ZHOU Jieming,LUO Huailiang,et al.Relationship between urban land use and spatio-temporal change characteristics of surface heat effect:A case study of Chengdu City[J].Journal of Natural Resources,2011,26(10):1738-1749.] [6]王娟,张优,张杰,等.基于TVDI的山地平原过渡带土壤水分反演——以绵竹市为例[J].水土保持研究,2018,25(2):151-156,161.[WANG Juan,ZHANG You,ZHANG Jie,et al.Soil moisture inversion in transitional zone of mountain plain based on temperature vegetation drought index method: A case study of Mianzhu City[J].Research of Soil and Water Conservation,2018,25(2):151-156,161.] [7]张芳.基于MODIS的陕西省干旱遥感监测研究[D].西安:陕西师范大学,2008.[ZHANG Fang.Remote sensing monitoring of drought in Shaanxi Province based on MODIS[D].Xi’an :Shaanxi Normal University,2008.] [8]宁吉才.基于遥感的地表温度对土地利用变化及咸水入侵的响应[D].济南:山东师范大学,2008.[NING Jicai.Retrieval of land surface temperature and its response to LUCC and salt water intrusion[D].Jinan: Shandong Normal University,2008.] [9]覃志豪,高懋芳,秦晓敏,等.农业旱灾监测中的地表温度遥感反演方法——以MODIS数据为例[J].自然灾害学报,2005,14(4):64-71.[QIN Zhihao,GAO Maofang,QIN Xiaomin,et al.Methodology to retrieve land surface temperature from MODIS data for agricultural drought monitoring in China[J].Journal of Natural Disasters,2005,14(4):64-71.] [10]LIANG X Y,LI Y B.Spatiotemporal features of farmland scaling and the mechanisms that underlie these changes within the Three Gorges Reservoir Area[J].Journal of Geographical Sciences,2019,29(4):563-580. [11]ZHANG X X,WANG L,YIN L C,et al.Spatial-temporal variation analysis and risk determinants of hand,foot and mouth disease in Beijing-Tianjin-Tangshan[J].Journal of Geo-information Science,2018,21(3):398-406. [12]张军,董洁,梁青芳,等.宝鸡市区土壤重金属污染影响因子探测及其源解析[J].环境科学,2019,(8):1-14.[ZHANG Jun,DONG Jie,LIANG Qingfang,et al.Heavy metal pollution characteristics and influencing factors in Baoji urban soils[J].Environmental Science,2019,(8):1-14.] [13]文路军,彭文甫,杨华容,等.夏季川西高原地表温度的空间特征和影响因素——以西昌市大部分区域为例[J].国土资源遥感,2017,29(2):207-214.[WEN Lujun,PENG Wenfu,YANG Huarong,et al.An analysis of land surface temperature (LST) and its influencing factors in summer in western Sichuan Plateau:A case study of Xichang City[J].Remote Sensing for Land & Resources,2017,29(2):207-214.] [14]孙常峰,孔繁花,尹海伟,等.山区夏季地表温度的影响因素——以泰山为例[J].生态学报,2014,34(12):3396-3404.[SUN Changfeng,KONG Fanhua,YIN Haiwei,et al.Analysis of factors affecting mountainous land surface temperature in the summer:A case study over Mount Tai[J].Acta Ecologica Sinica,2014,34(12):3396-3404.] [15]叶妍君,齐清文,姜莉莉,等.基于地理探测器的黑龙江垦区农场粮食产量影响因素分析[J].地理研究,2018,37(1):171-182.[YE Yanjun,QI Qingwen,JIANG Lili,et al.The analysis of influencing factors of the grain yield in Heilongjiang reclamation area based on the geographical detector[J].Geographical Research,2018,37(1):171-182.] [16]王劲峰,徐成东.地理探测器:原理与展望[J].地理学报,2017,72(1):116-134.[WANG Jinfeng,XU Chengdong.Geodetector: Principle and prospective[J].Acta Geographica Sinica,2017,72(1):116-134.] [17]SHRESTHA Anil,LUO Wei.Analysis of groundwater nitrate contamination in the Central Valley: Comparison of the geodetector method,principal component analysis and geographically weighted regression[J].International Journal of GeoInformation,2017,6(10):297. [18]XU C,LI Y,WANG J,et al.Spatial-temporal detection of risk factors for bacillary dysentery in Beijing,Tianjin and Hebei,China[J].Bmc Public Health,2017,17(1):743. [19]WANG Jinfeng,LI Xinhui,CHRISTAKOS G,et al.Geographical detectorsbased health risk assessment and its application in the neural tube defects study of the Heshun region,China[J].International Journal of Geographical Information Science,2010,24(1):107-127. [20]梁鑫源,李阳兵.三峡库区规模农地时空变化特征及其驱动机制[J].地理学报,2018,73(9):1630-1646.[LIANG Xinyuan,LI Yangbing.Spatio-temporal features of scaling farmland and its corresponding driving mechanism in Three Gorges Reservoir Area[J].Acta Geographica Sinica,2018,73(9):1630-1646.] [21]李佳洺,陆大道,徐成东,等.胡焕庸线两侧人口的空间分异性及其变化[J].地理学报,2017,72(1):148-160.[LI Jiaming,LU Dadao,XU Chengdong,et al.Spatial heterogeneity and its changes of population on the two sides of Hu Line[J].Acta Geographica Sinica,2017,72(1):148-160.] [22]董玉祥,徐茜,杨忍,等.基于地理探测器的中国陆地热带北界探讨[J].地理学报,2017,72(1): 135-147.[DONG Yuxiang,XU Qian,YANG Ren,et al.Delineation of the northern border of the tropical zone of China’s mainland using geodetector[J].Acta Geographica Sinica,2017,72(1): 135-147.] [23]丁悦,蔡建明,任周鹏,等.基于地理探测器的国家级经济技术开发区经济增长率空间分异及影响因素[J].地理科学进展,2014,33(5):657-666.[DING Yue,CAI Jianming,REN Zhoupeng,et al.Spatial disparities of economic growth rate of China’s Nationallevel ETDZs and their determinants based on geographical detector analysis[J].Progress in Geography,2014,33(5):657-666.] [24]WANG Huan,GAO Jiangbo,HOU Wenjuan.Quantitative attribution analysis of soil erosion in different geomorphological types in karst areas: Based on the geographical detector method[J].Journal of Geographical Sciences,2019,29(2):271-286. [25]李雨,韩平,任东,等.基于地理探测器的农田土壤重金属影响因子分析[J].中国农业科学,2017,50(21):4138-4148.[LI Yu,HAN Ping,REN Dong,et al.Influence factor analysis of farmland soil heavy metal based on the geographical detector[J].Scientia Agricultura Sinica,2017,50(21):4138-4148.] [26]肖武,隋涛,王鑫,等.巢湖流域典型农田土壤重金属污染评价与地理探测分析[J].农业机械学报,2018,49(7):144-152.[XIAO Wu,SUI Tao,WANG Xin,et al.Assessment and geographical detection of heavy metal pollution in typical farmland soil in Chaohu Lake Basin[J].Transaction of the Chinese Society of Agricultural Machinery,2018,49(7):144-152.] [27]刘彦随,李进涛.中国县域农村贫困化分异机制的地理探测与优化决策[J].地理学报,2017,72(1):161-173.[LIU Yansui,LI Jintao.Geographic detection and optimizing decision of the differentiation mechanism of rural poverty in China[J].Acta Geographica Sinica,2017,72(1):161-173.] [28]郭小英.基于Google Earth影像的乡镇土地利用分类方法研究[D].杨凌:西北农林科技大学,2010.[GUO Xiaoying.Research on town and villiage land use classification methods based on google earth images[D].Yangling:Northwest A & F University,2010.] [29]高永年,张万昌.遥感影像地形校正研究进展及其比较实验[J].地理研究,2008,27(2):467-477,484.[GAO Yongnian,ZHANG Wanchang.Comparison test and research progress of topographic correction on remotely sensed data[J].Geographical Research,2008,27(2):467-477,484.] [30]朱贞榕,程朋根,桂新,等.地表温度反演的算法综述[J].测绘与空间地理信息,2016,39(5):70-75.[ZHU Zhenrong,CHENG Penggen,GUI Xin,et al.Overview of surface temperature inversion algorithm[J].Geomatics & Spatial Information Technology,2016,39(5):70-75.] [31]覃志豪,李文娟,徐斌,等.陆地卫星TM6波段范围内地表比辐射率的估计[J].国土资源遥感,2004,(3):28-32,36-41,74.[QIN Zhihao,LI Wenjuan,XU Bin,et al.Phase noise filterings in interferogram[J].Remote Sensing for Land & Resources,2004,(3):28-32,36-41,74.] [32]蔡健.基于城市用地信息与地表温度反演的城市风道构建[D].西安:长安大学,2017.[CAI Jian.Construction method of urban ventilation channel based on urban land information and surface temperature retrieval:Shanghai Perspective[D].Xi’an:Chang’an University,2017.]
Outlines

/