Aboveground biomass estimation of the dominant species of vegetation in the Qingtu Lake at Minqin Qasis

Expand
  • College of Geography and Environment Science,Northwest Normal University,Lanzhou 730070,Gansu,China

Received date: 2019-03-01

  Revised date: 2019-06-12

  Online published: 2020-01-05

Abstract

The Qingtu Lake area at Minqin Qasis, Gansu Province, China belongs to the oasis-desert transition zone, and its ecological system is fragile and easy to develop into a desert. As dominant species of vegetation in the Qingtu Lake area, Haloxylon ammodendron, Nitraria tangutorum and Phragmites australis play an important role in the stability and healthy development of ecological system. Therefore, we selected the Qingtu Lake area as study area and took dominant species of the vegetation as the study objects. First, we applied object-oriented classification method with texture features to extract canopy breadth of Haloxylon ammodendron, Nitraria tangutorum and distribution area of Phragmites australis by high-resolution remote sensing image with a spatial resolution of 0.5 m (Worldview-2). Second, a model was established for the relationship between aboveground biomass and canopy breadth of Haloxylon ammodendron and Nitraria tangutorum and aboveground biomass and distribution area of Phragmites australis based on the field test data. Third, we estimated aboveground biomass of dominant species of vegetation with the model combined with the canopy area and distribution area in the Qingtu Lake area, which has achieved the conversion of aboveground biomass estimation of dominant species of vegetation from the point to the area.Results showed as follows: (1) Object-oriented classification method with texture features achieved good classification results, the overall Kappa coefficient was 87.9%,and the overall accuracy of 91.3%. (2) Total above ground biomass of the dominant of the vegetation in the study area was 3.17×103 t, and the aboveground biomass of Haloxylon ammodendron,Nitraria tangutorum,Phragmites australis was 0.54×103 t, 0.90×103 t, 1.73×103 t, respectively. Aboveground biomass was in the rank of Phragmites australis>Nitraria tangutorum>Haloxylon ammodendron. This paper could provide references for further study on ecological restoration and carbon reserve in Qingtu Lake area.

Cite this article

ZHANG Hua, ZHANG Yu-hong, ZHANG Gai-gai . Aboveground biomass estimation of the dominant species of vegetation in the Qingtu Lake at Minqin Qasis[J]. Arid Land Geography, 2020 , 43(1) : 201 -210 . DOI: 10.12118/j.issn.1000-6060.2020.01.23

References

[1]LAUENROTH W K,HUNT H W,SWIFT D M,et al.Estimating aboveground net primary production in grasslands:A simulation approach[J].Ecological Modelling,1986,33(2):297-314. [2]BARRACHINA M,CRIST-BAL J,TULLA A F.Estimating above-ground biomass on mountain meadows and pastures through remote sensing[J].International Journal of Applied Earth Observations & Geoinformation,2015,38(2):184-192. [3]HOUGHTON R A,LAWRENCE K T,HACKLER J L,et al.The spatial distribution of forest biomass in the Brazilian Amazon:A comparison of estimates[J].Global Change Biology,2001,7(7):731-746. [4]TAHVANAINEN T,FORSS E.Individual tree models for the crown biomass distribution of Scots pine,Norway spruce and birch in Finland[J].Forest Ecology&Management,2008,255(3-4):455-467. [5]李爽,张祖陆,周德民.湿地植被地上生物量遥感估算模型研究——以洪河湿地自然保护区为例[J].地理研究,2011,30(2):278-290.[LI Shuang,ZHANG Zulu,ZHOU Demin.An estimation of aboveground vegetation biomass in a national natural reserve using remote sensing[J].Geographical Research,2011,30(2):278-290.] [6]张蕊,李飞,王媛,等.三江源区退化天然草地和人工草地生物量碳密度特征[J].自然资源学报,2018,33(2):185-194.[ZHANG Rui,LI Fei,WANG Yuan,et al.Characteristics of biomass carbon density of degraded natural grassland and artificial grassland in the “Three-River Headwaters” region[J].Journal of Natural Resources,2018,33(2):185-194.] [7]贾文雄,王洁,张禹舜,等.祁连山南坡灌丛草甸生物量变化与水热因子的关系研究[J].地理科学,2016,36(8):1243-1251.[JIA Wenxiong,WANG Jie,ZHANG Yushun,et al.Biomass variation of shrubbery meadow and relation with humidity and heat facts in the southern slop of the Qilian Mountains[J].Scientia Geographica Sinica,2016,36(8):1243-1251.] [8]陈生云,刘文杰,叶柏生,等.疏勒河上游地区植被物种多样性和生物量及其与环境因子的关系[J].草业学报,2011,20(3):70-83.[CHEN Shengyun,LIU Wenjie,YE Baisheng,et al.Species diversity of vegetation in relation to biomass and environmental factors in the upper area of the Shule River[J].Acta Prataculturae Sinica,2011,20(3):70-83.] [9]李尚益,方晰,陈金磊,等.人为干扰对中亚热带森林生物量及其空间分布格局的影响[J].生态学报,2018,38(17):6111-6124.[LI Shangyi,FANG Xi,CHEN Jinlei,et al.Effects of different degree of anthropogenic disturbance on biomass and spatial distribution in subtropical forests in Central Southern China[J].Acta Ecologica Sinica,2018,38(17):6111-6124.] [10]刘双娜,周涛,舒阳,等.基于遥感降尺度估算中国森林生物量的空间分布[J].生态学报,2012,32(8):2320-2330.[LIU Shuangna,ZHOU Tao,SHU Yang,et al.The estimating of the spatial distribution of forest biomass in China based on remote sensing and downscaling techniques[J].Acta Ecologica Sinica,2012,32(8):2320-2330.] [11]RADLOFF,FRANS G T,MUCINA,et al.A quick and robust method for biomass estimation in structurally diverse vegetation[J].Journal of Vegetation Science,2007,18(5):719-724. [12]李文娟,赵传燕,彭焕华,等.黑河上游天涝池流域灌丛地上生物量空间分布[J].生态学报,2015,35(4):1134-1141.[LI Wenjuan,ZHAO Chuanyan,PENG Huanhua,et al.The spatial distribution of the aboveground biomass shrub in Tianlaochi catchment in the upper reaches of Heihe River[J].Acta Ecologica Sinica,2015,35(4):1134-1141.] [13]何兴元,任春颖,陈琳,等.森林生态系统遥感监测技术研究进展[J].地理科学,2018,38(7):997-1011.[HE Xingyuan,REN Chunying,CHEN Lin,et al.The progress of forest ecosystems monitoring with remote sensing techniques[J].Scientia Geographica Sinica,2018,38(7):997-1011.] [14]彭守璋,赵传燕,彭焕华,等.黑河下游柽柳种群地上生物量及耗水量的空间分布[J].应用生态学报,2010,21(8):1940-1946.[PENG Shouzhang,ZHAO Chuanyan,PENG Huanhua,et al.Spatial distribution of Tamarix ramosissima above ground biomass and water consumption in the lower reaches of Heihe River[J].Chinese Journal of Applied Ecology,2010,21(8):1940-1946.] [15]张华,赵传燕,张勃,等.高分辨率遥感影像GeoEye-1在黑河下游柽柳生物量估算中的应用[J].遥感技术与应用,2011,26(6):713-718.[ZHANG Hua,ZHAO Chuanyan,ZHANG Bo,et al.The application of high resolution satellite imagery GeoEye-1 on the biomass estimation of Tamarix ramosissima in lower reaches of Heihe River Basin[J].Remote Sensing Technology and Application,2011,26(6):713-718.] [16]陈君颖,田庆久.高分辨率遥感植被分类研究[J].遥感学报,2007,11(2):221-227.[CHEN Qunying,TIAN Qingjiu.Vegetation classification based on high-resolution satellite image[J].Journal of Remote Sensing,2007,11(2):221-227.] [17]严子柱,尉秋实,李得禄,等.民勤青土湖盐碱化退耕地天然植被的演替特征[J].中国农学通报,2014,30(16):1-6.[YAN Zizhu,WEI Qiushi,LI Delu,et al.Natural vegetation succession characteristics of Qingtu Lake salinization abandoned lands in Minqin[J].Chinese Agricultural Science Bulletin,2014,30(16):1-6.] [18]赵鹏.民勤绿洲荒漠过渡带植被空间分布及其环境解释[D].兰州:甘肃农业大学,2014.[Zhao Peng.Spatial distribution of plant communities and environmental interpretation in Minqin oasis-desert ecotone[D].Lanzhou:Gansu Agricultural University,2014.] [19][JP+1]刘淑娟,马剑平,刘世增,等.青土湖水面形成过程对荒漠植物多样性的影响[J].水土保持通报,2016,36(1):27-32.[LIU Shujuan,MA Jianping,LIU Shizeng,et al.Effects of Qingtu Lake water area formation on diversity of plants in desert region[J].Bulletin of Soil And Water Conservation,2016,36(1):27-32.] [20]鞠强,贡璐,杨金龙,等.梭梭光合生理生态过程与干旱环境的相互关系[J].干旱区资源与环境,2005,19(4):201-204.[JU Qiang,GONG Lu,YANG Jinlong,et al.Interrelation between the process of photosynthetic physiological ecology of Haloxylon ammodendron and xeric environment[J].Journal of Arid Land Resources and Environment,2005,19(4):201-204.] [21]何炎红,郭连生,田有亮.白刺叶不同水分状况下光合速率及其叶绿素荧光特性的研究[J].西北植物学报,2005,25(11):2226-2233.[HE Yanhong,GUO Liansheng,TIAN Youliang.Photosynthetic rates and chlorophyll fluorescence of Nitraria tangutorum at different leaf water potentials[J].Acta Bot Boreal-Occident Sin,2005,25(11):2226-2233.] [22]杨允菲,郎惠卿.不同生态条件下芦苇无性系种群调节分析[J].草业学报,1998,7(2):1-9.[YANG Yunfei,LANG Huiqing.A study of population regulation of Phragmiites communisas a clonal plant in different ecological[J].Acta Prataculturae Sinica,1998,7(2):1-9.] [23]陈政融,刘世增,刘淑娟,等.青土湖水面形成对区域典型植被分布的影响[J].中国农学通报,2015,31(21):177-183.[CHEN Zhengrong,LIU Shizeng,LIU Shujuan,et al.Effect of water body forming on the distribution of typical vegetation in Qingtu Lake[J].Chinese Agricultural Science Bulletin,2015,31(21):177-183.] [24]蒙诗栎,庞勇,张钟军,等.WorldView-2纹理的森林地上生物量反演[J].遥感学报,2017,21(5):812-824.[MENG Shiyue,PANG Yong,ZHANG Zhongjun,et al.Estimation of aboveground biomass in a temperate forest using texture information from WorldView-2[J].Journal of Remote Sensing,2017,21(5):812-824.] [25]赵成义,宋郁东,王玉潮,等.几种荒漠植物地上生物量估算的初步研究[J].应用生态学报,2004,15(1):49-52.[ZHAO Chengyi,SONG Yudong,WANG Yuchao,et al.Estimation of aboveground biomass of desert plants [J].Chinese Journal of Applied Ecology,2004,15(1):49-52.] [26]魏小平,赵长明,王根轩,等.民勤荒漠绿洲过渡带优势植物地上和地下生物量的估测模型(英文)[J].植物生态学报/Zhiwu Shengtai Xuebao,2005,29(6):878-883.[WEI Xiaoping,ZHAO Changming,WANG Genxuan,et al.Estimation of above- and below-ground biomass of dominant desert plant species in an oasis-desert ecotone of Minqin China[J].Acta Phytoecologica Sinica,2005,29(6):878-883.] [27]彭玉兰,涂卫国,包维楷,等.九寨沟自然保护区4种水深梯度下芦苇分株地上生物量的分配与生长[J].应用与环境生物学报,2008,14(2):153-157.[PENG Yulan,TU Weiguo,BAO Weikai,et al.Aboveground biomass allocation and growth of Phragmites australis ramets at four water depths in the Jiuzhaigou Nature Reserve,China[J].Chin J Appl Environ Biol,2008,14(2):153~157.] [28]陶冶,张元明.荒漠灌木生物量多尺度估测——以梭梭为例[J].草业学报,2013,22(6):1-10.[TAO Ye,ZHANG Yuanming.Multi-scale biomass estimating of desert shrubs:A case study of Haloxylon ammodendron in the Gurbantunggut Desert,China[J].Acta Prataculturae Sinica,2013,22(6):1-10.] [29]刘良云.植被定量遥感原理与应用[M].北京:科学出版社,2014:93-105.[LIU Liangyun.Principles and applications of quantitative remote sensing for vegetation[M].Beijing:Science Press,2014:93-105.] [30]田甜,范文义,卢伟,等.面向对象的优势树种类型信息提取技术[J].应用生态学报,2015,26(6):1665-1672.[TIAN Tian,FAN Wenyi,LU Wei,et al.An object-based information extraction technology for dominant tree species group types[J].Chinese Journal of Applied Ecology,2015,26(6):1665-1672.] [31]SMITH J R,CHANG S F.Automated binary texture feature sets for image retrieval[C]∥IEEE International Conference on Acoustics,Speech,and Signal Processing,Atlanta,GA,USA,1996:2239-2242. [32]张华,张改改,吴睿.基于GF-1卫星数据的面向对象的民勤绿洲植被分类研究[J].干旱区地理,2017,40(4):831-838.[ZHANG Hua,ZHANG Gaigai,WU Rui.Object-based vegetable classification based on GF-1 imagery in Minqin Oasis[J].Arid Land Geography,2017,40(4):831-838.] [33]BAATZ M,SCHAP E.Multiresolution segmentation:An optimization approach for high quality multi-scale image segmentation[C]∥STROBL J,BLASCHKE T,GRIESEBNER G.Angewandte Geographische Informationsverarbeitung XⅡ,Wichmann,Heidelberg,Germany ,2000:12-23. [34]CONGALTON R G,MEAD R A,ODERWALD R G.A quantitative method to test for consistency and correctness in photointerpretation[J].Photogrammetric Engineering & Remote Sensing,1983,49(1):69-74. [35]赵文智,常学礼,李启森,等.荒漠绿洲区芦苇种群构件生物量与地下水埋深关系[J].生态学报,2003,23(6):1138-1146.[ZHAO Wenzhi,CHANG Xueli,LI Qisen,et al.Relationship between structural component biomass of reed population and ground water depth in desert oasis [J].Acta Ecologica Sinica,2003,23(6):1138-1146.
Outlines

/