Carbon Emissions

Spatial-temporal characteristics and influencing factors of agricultural carbon emissions in the Yellow River Basin

  • LI Mengran ,
  • XU Xiaoren ,
  • WANG Liang ,
  • DUAN Jian ,
  • SHI Shuqi ,
  • REN Dandan
Expand
  • 1. Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, Shandong, China
    2. College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China

Received date: 2024-07-01

  Revised date: 2024-09-30

  Online published: 2025-05-13

Abstract

Based on six carbon sources in agricultural production, namely fertilizers, pesticides, agricultural films, diesel oil, plowing, and agricultural irrigation, this study applied the carbon emission coefficient method proposed by the United Nations Intergovernmental Panel on Climate Change to measure and analyze the spatiotemporal variation in agricultural carbon emissions at provincial and municipal scales in the Yellow River Basin of China from 2005 to 2020. The spatial heterogeneity of the influencing factors was assessed using a geographically weighted regression model. The conclusions are as follows: (1) From 2005 to 2020, agricultural carbon emissions in the Yellow River Basin initially increased before declining, following an overall upward trend. Emissions rose from 4431.95×104 t in 2005 to 4915.87×104 t in 2020. Among the carbon sources, fertilizers and plowing were the primary contributors, accounting for more than 65% of total agricultural carbon emissions. Pesticide-related carbon emissions consistently remained the lowest. (2) In 2005, Shandong Province was the leading contributor to agricultural carbon emissions in the Yellow River Basin, with emissions of 1241.68×104 t. However, from 2010 to 2020, Henan Province became the largest emitter, with annual emissions ranging from 1360×104 t to 1470×104 t. Qinghai Province consistently recorded the lowest agricultural carbon emissions. In 2020, agricultural carbon emissions at the municipal scale exhibited a stepped decline from east to west in the Yellow River Basin. (3) The positive effect of agricultural production efficiency on agricultural carbon emissions was stronger in the southeast and northwest and lower in the northeast of the Yellow River Basin. The negative impact of agricultural structure was most pronounced in Shanxi Province. The highest positive impact of agricultural economic development was observed at the borders of Shaanxi Province, Shanxi Province, and Henan Province. The positive effect of the agricultural labor force was higher in the southeast and northwest and lower in the southwest.

Cite this article

LI Mengran , XU Xiaoren , WANG Liang , DUAN Jian , SHI Shuqi , REN Dandan . Spatial-temporal characteristics and influencing factors of agricultural carbon emissions in the Yellow River Basin[J]. Arid Land Geography, 2025 , 48(5) : 854 -865 . DOI: 10.12118/j.issn.1000-6060.2024.401

References

[1] Vetter S H, Sapkota T B, Hillier J, et al. Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation[J]. Agriculture, Ecosystems & Environment, 2017, 237(2): 234-241.
[2] 贾智杰, 杨香义. 迈向碳中和: 中国减煤路径的模拟与评估[J]. 中国人口·资源与环境, 2024, 34(6): 9-20.
  [Jia Zhijie, Yang Xiangyi. Towards carbon neutrality: Simulation and evaluation of China’s coal reduction path[J]. China Population, Resources and Environment, 2024, 34(6): 9-20. ]
[3] 陈迎. 碳公平视角下碳关税的内在缺陷、深层冲突与国际协同治理[J]. 中国人口·资源与环境, 2024, 34(7): 1-13.
  [Chen Ying. Inherent flaws, deep-rooted conflicts, and synergistic international governance of carbon tariffs from a carbon equity perspective[J]. China Population, Resources and Environment, 2024, 34(7): 1-13. ]
[4] 陈炜, 殷田园, 李红兵. 1997—2015年中国种植业碳排放时空特征及与农业发展的关系[J]. 干旱区资源与环境, 2019, 33(2): 37-44.
  [Chen Wei, Yin Tianyuan, Li Hongbing. Spatiotempora distribution characteristics of carbon emission from plant industry and the relationship with agriculture development in China from 1997 to 2015[J]. Journal of Arid Resources and Environment, 2019, 33(2): 37-44. ]
[5] 曹昱亮, 倪珣, 巩红禹. 长江经济带农业碳排放影响因素及脱钩效应[J]. 环境科学, 2025, 46(3): 1535-1547.
  [Cao Yuliang, Ni Xun, Gong Hongyu. Influencing factors and decoupling effects of agricultural carbon emissions in the Yangtze River Economic Belt[J]. Environmental Science, 2025, 46(3): 1535-1547.
[6] 张青青, 曲衍波, 展凌云, 等. 中国粮食生产碳排放动态演进及驱动效应[J]. 地理学报, 2023, 78(9): 2186-2208.
  [Zhang Qingqing, Qu Yanbo, Zhan Lingyun, et al. Dynamic evolution and driving effects of carbon emissions from grain production in China[J]. Acta Geographica Sinica, 2023, 78(9): 2186-2208. ]
[7] 吴昊玥, 孟越, 黄瀚蛟, 等. 中国耕地利用净碳汇与农业生产的时空耦合特征[J]. 水土保持学报, 2022, 36(5): 360-368, 376.
  [Wu Haoyue, Meng Yue, Huang Hanjiao, et al. Spatiotemporal coupling between the net carbon sequestration of cropland use and agricultural production in China[J]. Journal of Soil and Water Conservation, 2022, 36(5): 360-368, 376. ]
[8] 何艳秋, 戴小文. 中国农业碳排放驱动因素的时空特征研究[J]. 资源科学, 2016, 38(9): 1780-1790.
  [He Yanqiu, Dai Xiaowen. Phase characteristics and regional differences in agriculture carbon emissions in China[J]. Resources Science, 2016, 38(9): 1780-1790. ]
[9] 李彦旻, 沈育生, 王世航. 基于土地利用变化的安徽省陆地碳排放时空特征及效应[J]. 水土保持学报, 2022, 36(1): 182-188.
  [Li Yanmin, Shen Yusheng, Wang Shihang. Spatio-temporal characteristics effects of terrestrial carbon emissions based on land use change in Anhui Province[J]. Journal of Soil and Water Conservation, 2022, 36(1): 182-188. ]
[10] 李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口·资源与环境, 2011, 21(8): 80-86.
  [Li Bo, Zhang Junbiao, Li Haipeng. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China[J]. China Population, Resources and Environment, 2011, 21(8): 80-86. ]
[11] 金书秦, 林煜, 牛坤玉. 以低碳带动农业绿色转型: 中国农业碳排放特征及其减排路径[J]. 改革, 2021(5): 29-37.
  [Jin Shuqin, Lin Yu, Niu Kunyu. Driving green transformation of agriculture with low carbon: Characteristics of agricultural carbon emissions and its emission reduction path in China[J]. Reform, 2021(5): 29-37. ]
[12] 田云, 张俊飚. 中国农业生产净碳效应分异研究[J]. 自然资源学报, 2013, 28(8): 1298-1309.
  [Tian Yun, Zhang Junbiao. Regional differentiation research on net carbon effect of agricultural production in China[J]. Journal of Natural Resources, 2013, 28(8): 1298-1309. ]
[13] 马海清, 陈强强. 甘肃省农业碳排放时空分异特征及影响因素[J/OL]. 干旱区地理.[2024-08-26].http://kns.cnki.net/kcms/detail/65.1103.X.20240826.1508.002.html.
  [Ma Haiqing, Chen Qiang-qiang. Spatial-temporal differentiation characteristics and influencing factors of agricultural carbon emissions in Gansu Province[J/OL]. Arid Land Geography.[2024-08-26]. http://kns.cnki.net/kcms/detail/65.1103.X.20240826.1508.002.html. ]
[14] 冉锦成, 苏洋, 胡金凤, 等. 新疆农业碳排放时空特征、峰值预测及影响因素研究[J]. 中国农业资源与区划, 2017, 38(8): 16-24.
  [Ran Jincheng, Su Yang, Hu Jinfeng, et al. Temporal and spatial characteristics, peak value forecast and influencing factors of agricultural carbon emissions in Xinjiang[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(8): 16-24. ]
[15] 夏文浩, 霍瑜, 逯渊, 等. 新疆农业碳排放的时空差异与空间溢出效应分析[J]. 干旱区地理, 2024, 47(6): 1084-1096.
  [Xia Wenhao, Huo Yu, Lu Yuan, et al. Analysis of spatial temporal differences and spatial spillover effects of agricultural carbon emissions in Xinjiang[J]. Arid Land Geography, 2024, 47(6): 1084-1096. ]
[16] 吴贤荣, 张俊飚. 中国省域农业碳排放: 增长主导效应与减排退耦效应[J]. 农业技术经济, 2017(5): 27-36.
  [Wu Xianrong, Zhang Junbiao. Agricultural carbon emissions at provincial level in China: Growth-led effect and emission reduction decoupling effect[J]. Journal of Agrotechnical Economics, 2017(5): 27-36. ]
[17] 胡婉玲, 张金鑫, 王红玲. 中国农业碳排放特征及影响因素研究[J]. 统计与决策, 2020, 36(5): 56-62.
  [Hu Wanling, Zhang Jinxin, Wang Hongling. Characteristics and influencing factors of agricultural carbon emission in China[J]. Statistics & Decision, 2020, 36(5): 56-62. ]
[18] 黄和平, 李紫霞, 黄靛, 等. “双碳”目标下江西省农业碳排放量测算、影响因素分析与预测研究[J]. 生态与农村环境学报, 2024, 40(2): 179-190.
  [Huang Heping, Li Zixia, Huang Dian, et al. Research on the measurement, analysis and prediction of agricultural carbon emissions in Jiangxi Province under the “dual carbon” goals[J]. Journal of Ecology and Rural Environment, 2024, 40(2): 179-190. ]
[19] 吕斯涵, 张小平. 山东省农业净碳汇时空演化特征分析[J]. 水土保持学报, 2019, 33(2): 227-234.
  [Lü Sihan, Zhang Xiaoping. Spatial-temporal characteristics of agricultural net carbon sink in Shandong Province[J]. Journal of Soil and Water Conservation, 2019, 33(2): 227-234. ]
[20] 刘华军, 鲍振, 杨骞. 中国农业碳排放的地区差距及其分布动态演进: 基于Dagum基尼系数分解与非参数估计方法的实证研究[J]. 农业技术经济, 2013(3): 72-81.
  [Liu Huajun, Bao Zhen, Yang Qian. Regional disparity and dynamic evolution of distribution of agricultural carbon emissions in China: An empirical study based on Dagum Gini coefficient decomposition and non-parametric estimation[J]. Journal of Agrotechnical Economics, 2013(3): 72-81. ]
[21] Wang L G, Zhu R, Yin Z L, et al. Quantifying the spatial-temporal patterns and influencing factors of agricultural carbon emissions based on the coupling effect of water-land resources in arid inland regions[J]. Frontiers in Environmental Science, 2022, 10: 908987, doi: 10.3389/fenvs.2022.908987.
[22] 黄晓慧, 杨飞, 陆迁. 粮食主产区农业碳排放回弹效应研究[J]. 长江流域资源与环境, 2022, 31(12): 2780-2788.
  [Huang Xiaohui, Yang Fei, Lu Qian. Research on the rebound effect of agricultural carbon emission based on technological progress in main grain producing area[J]. Research and Environment in the Yangtze Basin, 2022, 31(12): 2780-2788. ]
[23] 薛媛, 李春华, 李静雯, 等. 中国农业碳排放时空特征及驱动因素分析[J]. 中国生态农业学报, 2024, 32(11): 1805-1817.
  [Xue Yuan, Li Chunhua, Li Jingwen, et al. Analysis of spatial and temporal characteristics and drivers of agricultural carbon emissions in China[J]. Chinese Journal of Eco-Agriculture, 2024, 32(11): 1805-1817. ]
[24] 杨思存, 霍琳, 王成宝, 等. 基于STIRPAT模型的甘肃省农业碳排放特征分析[J]. 干旱区地理, 2023, 46(9): 1493-1502.
  [Yang Sicun, Huo Lin, Wang Chengbao, et al. Characteristics of agricultural carbon emissions in Gansu Province based on STIRPAT model[J]. Arid Land Geography, 2023, 46(9): 1493-1502. ]
[25] Goglio P, Smith W N, Grant B B, et al. A comparison of methods to quantify greenhouse gas emissions of cropping systems in LCA[J]. Journal of Cleaner Production, 2018, 172(3): 4010-4017.
[26] Zhao R Q, Liu Y, Tian M M, et al. Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus[J]. Land Use Policy, 2018, 72: 480-492.
[27] 邓维忠, 许中坚. 湖南省农业碳排放特征及碳达峰分析[J]. 中国生态农业学报(中英文), 2024, 32(2): 206-217.
  [Deng Weizhong, Xu Zhongjian. Characteristics of agricultural carbon emissions and carbon peak analysis in Hunan Province[J]. Chinese Journal of Eco-Agriculture, 2024, 32(2): 206-217. ]
[28] 张小平, 王龙飞. 甘肃省农业碳排放变化及影响因素分析[J]. 干旱区地理, 2014, 37(5): 1029-1035.
  [Zhang Xiaoping, Wang Longfei. Variations and influential factors of agricultural carbon emissions in Gansu Province[J]. Arid Land Geography, 2014, 37(5): 1029-1035. ]
[29] 戴小文, 漆雁斌, 唐宏. 1990—2010年中国农业隐含碳排放及其驱动因素研究[J]. 资源科学, 2015, 37(8): 1668-1676.
  [Dai Xiaowen, Qi Yanbin, Tang Hong. Embodied CO2emission calculation and influence factors decomposition in China’s agriculture sector[J]. Resources Science, 2015, 37(8): 1668-1676. ]
[30] 何艳秋, 王鸿春, 刘云强. 产业集聚视角下农业碳排放的空间效应[J]. 资源科学, 2022, 44(12): 2428-2439.
  [He Yanqiu, Wang Hongchun, Liu Yunqiang. Spatial effects of agricultural carbon emissions from the perspective of industrial agglomeration[J]. Resources Science, 2022, 44(12): 2428-2439. ]
[31] 田云, 尹忞昊, 张蕙杰. 我国农村能源碳排放时空格局、影响因素及空间溢出效应[J]. 中国农业科学, 2023, 56(13): 2547-2562.
  [Tian Yun, Yin Minhao, Zhang Huijie. Spatial-temporal pattern, influencing factors and spatial spillover effects of rural energy carbon emissions in China[J]. Scientia Agricultura Sinica, 2023, 56(13): 2547-2562. ]
[32] 崔盼盼, 赵媛, 张丽君, 等. 基于不同需求层次的中国城镇居民消费隐含碳排放时空演变机制[J]. 生态学报, 2020, 40(4): 1424-1435.
  [Cui Panpan, Zhao Yuan, Zhang Lijun, et al. Spatio-temporal evolution and driving mechanism of per capita indirect carbon emissions based on different demand levels from urban residents’ consumption in China[J]. Acta Ecologica Sinica, 2020, 40(4): 1424-1435. ]
[33] Dyer J A, Kulshreshtha S N, Mcconkey B G, et al. An assessment of fossil fuel energy use and CO2 emissions from farm field operations using a regional level crop and land use database for Canada[J]. Energy, 2010, 35(5): 2261-2269.
[34] 赵欣, 龙如银. 考虑全要素生产率的中国碳排放影响因素分析[J]. 资源科学, 2010, 32(10): 1863-1870.
  [Zhao Xin, Long Ruyin. Analysis of factors of China’s carbon emissions considering the total factor productivity[J]. Resources Science, 2010, 32(10): 1863-1870. ]
[35] 段华平, 张悦, 赵建波, 等. 中国农田生态系统的碳足迹分析[J]. 水土保持学报, 2011, 25(5): 203-208.
  [Duan Huaping, Zhang Yue, Zhao Jianbo, et al. Carbon footprint analysis of farmland ecosystem in China[J]. Journal of Soil and Water Conservation, 2011, 25(5): 203-208. ]
[36] 李国志, 李宗植. 中国农业能源消费碳排放因素分解实证分析: 基于LMDI模型[J]. 农业技术经济, 2010(10): 66-72.
  [Li Guozhi, Li Zongzhi. Factorization of carbon emissions from agricultural energy consumption in China: An empirical analysis based on LMDI model[J]. Journal of Agrotechnical Economics, 2010(10): 66-72. ]
[37] 虞晓芬, 周家乐, 湛东升, 等. 中国城市住房质量空间格局与影响因素空间异质性[J]. 地理研究, 2023, 42(12): 3278-3293.
  [Yu Xiaofen, Zhou Jiale, Zhan Dongsheng, et al. Spatial pattern and spatial heterogeneity of influencing factors of housing quality in urban China[J]. Geographical Research, 2023, 42(12): 3278-3293. ]
Outlines

/