Spatiotemporal variation of actual evapotranspiration and its influencing factors in the northeast Qinghai-Xizang Plateau
Received date: 2024-06-25
Revised date: 2024-08-06
Online published: 2025-05-13
The spatiotemporal characteristics and influencing factors of actual evapotranspiration (ET) in the northeastern Qinghai-Xizang Plateau are crucial for the effective management of regional water resources and the ecological environment. Using Qinghai Province, located in this region, as the study area, this study analyzed actual ET data (MOD16 ET) from 2001 to 2020 to explore the spatiotemporal patterns, variation trends, and influencing factors over the past 20 years. The results indicate the following: (1) The average annual actual evapotranspiration in Qinghai Province from 2001 to 2020 was 260 mm·a-1, showing a fluctuating increasing trend. The fluctuation period also showed an increasing trend, with an average interannual change rate of 2%. Areas where actual ET increased accounts for 69.69% of the total area, and areas where it decreased accounted for 16.51%. Among them, the Qilian Mountains area and the eastern part of the river source ecological zone exhibited an increasing trend in actual ET. The seasonal variation of actual ET in Qinghai Province was significant, with the maximum in summer, the minimum in winter, and similar values in spring and autumn. (2) The average actual ET in Qinghai Province from 2001 to 2020 showed a spatial distribution characteristic of being low in the northwest and high in the southeast. There were large differences in actual ET among various ecological zones in Qinghai Province, with the Three River Source area and the Qilian Mountains area exhibiting the largest actual ET distribution, and the Qaidam Basin ecological zone had the smallest actual ET. The actual ET of the main vegetation cover types was ranked as follows: shrubland>forest land>grassland>arable land. (3) The fluctuating changes in actual ET in Qinghai Province from 2001 to 2020 were basically consistent with temperature variations. The increase in actual ET largely corresponded to the increasing trend of precipitation fluctuations, but the peak lagged behind changes in precipitation. (4) Actual ET was positively correlated with annual average temperature, annual total precipitation, sunshine duration, and average wind speed in 73%, 56%, 43%, and 44% of the total study area, respectively. Temperature and precipitation were the primary controlling factors of actual ET, whereas sunshine duration and wind speed also exerted notable influences. There were significant regional differences in the factors affecting the changes in actual evapotranspiration.
LU Han , ZENG Yongnian , WANG Pancheng . Spatiotemporal variation of actual evapotranspiration and its influencing factors in the northeast Qinghai-Xizang Plateau[J]. Arid Land Geography, 2025 , 48(5) : 753 -764 . DOI: 10.12118/j.issn.1000-6060.2024.395
| [1] | 张圆, 贾贞贞, 刘绍民, 等. 遥感估算地表蒸散发真实性检验研究进展[J]. 遥感学报, 2020, 24(8): 975-999. |
| [Zhang Yuan, Jia Zhenzhen, Liu Shaomin, et al. Advances in validation of remotely sensed land surface evapotranspiration[J]. Journal of Remote Sensing, 2020, 24(8): 975-999. ] | |
| [2] | 冯飞, 姚云军, 张彦彬, 等. 基于MOD16产品的三江平原蒸散量时空分布特征分析[J]. 生态环境学报, 2015, 24(11): 1858-1864. |
| [Feng Fei, Yao Yunjun, Zhang Yanbin, et al. Spatio-temporal variations of evapotranspiration in Sanjiang Plain using MOD16 products[J]. Ecology and Environmental Sciences, 2015, 24(11): 1858-1864. ] | |
| [3] | 王焕, 梅再美. 贵州省地表蒸散发时空变化及其与气候因子的关系[J]. 水土保持研究, 2020, 27(5): 221-229. |
| [Wang Huan, Mei Zaimei. Spatiotemporal changes of evapotranspiration and their relationship with climate factors in Guizhou Province[J]. Research of Soil and Water Conservation, 2020, 27(5): 221-229. ] | |
| [4] | 刘昌明, 张丹. 中国地表潜在蒸散发敏感性的时空变化特征分析[J]. 地理学报, 2011, 66(5): 579-588. |
| [Liu Changming, Zhang Dan. Temporal and spatial change analysis of the sensitivity of potential evapotranspiration to meteorological influencing factors in China[J]. Acta Geographica Sinica, 2011, 66(5): 579-588. ] | |
| [5] | 张晓涛, 康绍忠, 王鹏新, 等. 估算区域蒸发蒸腾量的遥感模型对比分析[J]. 农业工程学报, 2006, 22(7): 6-13. |
| [Zhang Xiaotao, Kang Shaozhong, Wang Pengxin, et al. Comparative analysis of regional evapotranspiration estimation models using remotely sensed data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(7): 6-13. ] | |
| [6] | Mu Q Z, Heinsch F A, Zhao M S, et al. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data[J]. Remote Sensing of Environment, 2007, 111(4): 519-536. |
| [7] | Mu Q Z, Zhao M S, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8): 1781-1800. |
| [8] | Hu G C, Li J. Monitoring of evapotranspiration in a semi-arid inland river basin by combining microwave and optical remote sensing observations[J]. Remote Sensing, 2015, 7(3): 3056-3087. |
| [9] | Miralles D G, Holmes T, De J, et al. Global land-surface evaporation estimated from satellite-based observations[J]. Hydrology and Earth System Sciences Discussions, 2010, 7(5): 453-469. |
| [10] | Senay G B, Bohms S, Singh R K, et al. Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach[J]. Jawra Journal of the American Water Resources Association, 2013, 49(3): 577-591. |
| [11] | Loarie S R, Lobell D B, Asner G P, et al. Direct impacts on local climate of sugar-cane expansion in Brazil[J]. Nature Climate Change, 2011, 1(2): 105-109. |
| [12] | Faisol A, Indarto I, Novita E, et al. An evaluation of MODIS global evapotranspiration product (MOD16A2) as terrestrial evapotranspiration in east Java-Indonesia[J]. IOP Conference Series: Earth and Environmental Science, 2020, 485(1): 12002, doi: 10.1088/1755-1315/485/1/012002. |
| [13] | 吴桂平, 刘元波, 赵晓松, 等. 基于MOD16产品的鄱阳湖流域地表蒸散量时空分布特征[J]. 地理研究, 2013, 32(4): 617-627. |
| [Wu Guiping, Liu Yuanbo, Zhao Xiaosong, et al. Spatio-temporal variations of evapotranspiration in Poyang Lake Basin using MOD16 products[J]. Geographical Research, 2013, 32(4): 617-627. ] | |
| [14] | 张猛, 曾永年, 齐玥. 基于MOD16的洞庭湖流域2000—2014年地表蒸散时空变化分析[J]. 农业工程学报, 2018, 34(20): 160-168. |
| [Zhang Meng, Zeng Yongnian, Qi Yue. Analyzing spatio-temporal variations of evapotranspiration in Dongting Lake Basin during 2000—2014 based on MOD16[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 160-168. ] | |
| [15] | 王卓月, 孔金玲, 李英, 等. 基于MOD16的银川平原地表蒸散量时空特征及影响因素分析[J]. 水文地质工程地质, 2021, 48(3): 53-61. |
| [Wang Zhuoyue, Kong Jinling, Li Ying, et al. An analysis of spatio-temporal characteristics and influencing factors of surface evapotranspiration in the Yinchuan Plain based on MOD16 data[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 53-61. ] | |
| [16] | 范雪梅, 罗贤, 季漩, 等. 基于MOD16产品的怒江流域中上游蒸散发分布特征研究[J]. 水土保持通报, 2019, 39(2): 199-205. |
| [Fan Xuemei, Luo Xian, Ji Xuan, et al. Spatial distribution of evapotranspiration in middle and upper Nujiang River Basin based on MOD16 products[J]. Bulletin of Soil and Water Conservation, 2019, 39(2): 199-205. ] | |
| [17] | 孔晶晶, 昝梅, 张振东. 新疆玛纳斯河流域蒸散发时空分布格局研究[J]. 灌溉排水学报, 2021, 40(10): 117-124. |
| [Kong Jingjing, Zan Mei, Zhang Zhendong. Spatiotemporal variation of evapotranspiration in the Manas River Basin in Xinjiang[J]. Journal of Irrigation and Drainage, 2021, 40(10): 117-124. ] | |
| [18] | 褚荣浩, 李萌, 谢鹏飞, 等. 安徽省近20年地表蒸散和干旱变化特征及其影响因素分析[J]. 生态环境学报, 2021, 30(6): 1229-1239. |
| [Chu Ronghao, Li Meng, Xie Pengfei, et al. Characteristics and influencing factors of surface evapotranspiration and drought in Anhui Province during recent 20 years[J]. Ecology and Environmental Sciences, 2021, 30(6): 1229-1239. ] | |
| [19] | 温媛媛, 赵军, 王炎强, 等. 基于MOD16的山西省地表蒸散发时空变化特征分析[J]. 地理科学进展, 2020, 39(2): 255-264. |
| [Wen Yuanyuan, Zhao Jun, Wang Yanqiang, et al. Spatiotemporal variation characteristics of surface evapotranspiration in Shanxi Province based on MOD16[J]. Progress in Geography, 2020, 39(2): 255-264. ] | |
| [20] | 马建琴, 陈阳, 郝秀平, 等. 2001—2019年河南省地表蒸散发时空变化及其影响因素[J]. 水土保持研究, 2021, 28(5): 134-141. |
| [Ma Jianqin, Chen Yang, Hao Xiuping, et al. Temporal and spatial changes of surface evapotranspiration and its influencing factors in Henan Province from 2001 to 2019[J]. Research of Soil and Water Conservation, 2021, 28(5): 134-141. ] | |
| [21] | 贺添, 邵全琴. 基于MOD16产品的我国2001—2010年蒸散发时空格局变化分析[J]. 地球信息科学学报, 2014, 16(6): 979-988. |
| [He Tian, Shao Quanqin. Spatial-temporal variation of terrestrial evapotranspiration in China from 2001 to 2010 using MOD16 products[J]. Journal of Geo-information Science, 2014, 16(6): 979-988. ] | |
| [22] | 杨艳颖, 毛克彪. 中国蒸散时空变化规律及其对耕地旱灾影响研究[J]. 中国农业资源与区划, 2021, 42(9): 36-51. |
| [Yang Yanying, Mao Kebiao. Temporal and spatial variation of variation of evapotranspiration in China its impact on drought of cropland[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(9): 36-51. ] | |
| [23] | 邱丽莎, 张立峰, 何毅, 等. 2000—2018年祁连山蒸散发时空变化及影响因素[J]. 水土保持研究, 2020, 27(3): 210-217. |
| [Qiu Lisha, Zhang Lifeng, He Yi, et al. Spatiotemporal variations of evapotranspiration and influence factors in Qilian Mountain from 2000 to 2018[J]. Research of Soil and Water Conservation, 2020, 27(3): 210-217. ] | |
| [24] | 叶红, 张廷斌, 易桂花, 等. 2000—2014年黄河源区ET时空特征及其与气候因子关系[J]. 地理学报, 2018, 73(11): 2117-2134. |
| [Ye Hong, Zhang Tingbin, Yi Guihua, et al. Spatio-temporal characteristics of evapotranspiration and its relationship with climate factors in the source region of the Yellow River from 2000 to 2014[J]. Acta Geographica Sinica, 2018, 73(11): 2117-2134. ] | |
| [25] | 王军邦, 赵烜岚, 叶辉, 等. 基于贝叶斯模型平均的蒸散遥感产品集成——以三江源国家公园为例[J]. 应用生态学报, 2021, 32(6): 2119-2128. |
| [Wang Junbang, Zhao Xuanlan, Ye Hui, et al. Integration of evapotranspiration remote sensing products based on Bayesian model averaging: An example from Three-River-Source National Park[J]. Chinese Journal of Applied Ecology, 2021, 32(6): 2119-2128. ] | |
| [26] | 赵天玮, 朱文彬, 裴亮, 等. 三江源蒸散发遥感估算及其时空分布特征研究[J]. 遥感技术与应用, 2022, 37(1): 137-147. |
| [Zhao Tianwei, Zhu Wenbin, Pei Liang, et al. Remote sensing estimation of terrestrial evapotranspiration and analysis of its temporal-spatial distribution characteristics over the Three-River Headwater region[J]. Remote Sensing Technology and Application, 2022, 37(1): 137-147. ] | |
| [27] | 李红阳, 陈天宇, 王圣杰, 等. 1979—2021年新疆昆仑山北坡潜在蒸散时空变化研究[J]. 干旱区地理, 2024, 47(9): 1443-1450. |
| [Li Hongyang, Chen Tianyu, Wang Shengjie, et al. Spatial and temporal variations of potential evapotranspiration on the northern slope of the Kunlun Mountains in Xinjiang from 1979 to 2021[J]. Arid Land Geography, 2024, 47(9): 1443-1450. ] | |
| [28] | 马亚丽, 牛最荣, 孙栋元. 河西走廊潜在蒸散发时空格局变化与气象因素的关系[J]. 干旱区地理, 2024, 47(2): 192-202. |
| [Ma Yali, Niu Zuirong, Sun Dongyuan. Relationship between changes in spatial and temporal patterns of potential evapotranspiration and meteorological factors in the Hexi Corridor[J]. Arid Land Geography, 2024, 47(2): 192-202. ] | |
| [29] | 申红艳, 马明亮, 王冀, 等. 青海省极端气温事件的气候变化特征研究[J]. 冰川冻土, 2012, 34(6): 1371-1379. |
| [Shen Hongyan, Ma Mingliang, Wang Ji, et al. Variation characteristics of extreme air temperature events in Qinghai Province[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1371-1379. ] | |
| [30] | 刘凤, 曾永年. 2000—2015年青海高原植被碳源/汇时空格局及变化[J]. 生态学报, 2021, 41(14): 5792-5803. |
| [Liu Feng, Zeng Yongnian. Analysis of the spatio-temporal variation of vegetation carbon source/sink in Qinghai Plateau from 2000—2015[J]. Acta Ecologica Sinica, 2021, 41(14): 5792-5803. ] | |
| [31] | Liu S M, Li X, Xu Z L, et al. The Heihe integrated observatory network: A basin-scale land surface processes observatory in China[J]. Vadose Zone Journal, 2018, 17(1): 180072, doi: 10.2136/vzj2018.04.0072. |
| [32] | 刘绍民, 车涛, 徐自为, 等. 祁连山综合观测网: 黑河流域地表过程综合观测网(阿柔超级站涡动相关仪-2020)[R]. 北京: 国家青藏高原科学数据中心, 2021. |
| [Liu Shaomin, Che Tao, Xu Ziwei, et al. Qilian Mountain comprehensive observation network: Heihe River Basin surface process comprehensive observation network (Aru superstation eddy correlation instrument 2020)[R]. Beijing: National Tibetan Plateau / Third Pole Environment Data Center, 2021. ] | |
| [33] | Li X Y, Yang X F, Ma Y J, et al. Qinghai Lake Basin critical zone observatory on the Qinghai-Tibet Plateau[J]. Vadose Zone Journal, 2018, 17(1): 180069, doi: 10.2136/vzj2018.04.0069. |
| [34] | 李小雁. 祁连山综合观测网:青海湖流域地表过程综合观测网(温性草原涡动相关仪-2020)[R]. 北京: 国家青藏高原科学数据中心, 2021. |
| [Li Xiaoyan. Qilian Mountain comprehensive observation network: Qinghai Lake Basin surface process comprehensive observation network (temperate grassland eddy correlation instrument-2020)[R]. Beijing: National Tibetan Plateau / Third Pole Environment Data Center, 2021. ] | |
| [35] | 徐自为, 刘绍民, 徐同仁, 等. 涡动相关仪观测蒸散量的插补方法比较[J]. 地球科学进展, 2009, 24(4): 372-382. |
| [Xu Ziwei, Liu Shaomin, Xu Tongren, et al. Comparison of the gap filling methods of evapotranspiration measured by eddy covariance system[J]. Advances in Earth Science, 2009, 24(4): 372-382. ] | |
| [36] | Ke Y, Im J, Park S, et al. Spatiotemporal downscaling approaches for monitoring 8-day 30 m actual evapotranspiration[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 126: 79-93. |
| [37] | Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907-3925. |
/
| 〈 |
|
〉 |