Earth Surface Process

Runoff estimation with low altitude remote sensing and satellite images

  • Leipeng JIANG ,
  • Jianli DING ,
  • Qingling BAO ,
  • Xiangyu GE ,
  • Jingming LIU ,
  • Jinjie WANG
Expand
  • 1. College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, Xinjiang, China
    2. Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, Xinjiang, China
    3. Key Laboratory of Smart City and Environment Modelling of Higher Education Institute, Urumqi 830046, Xinjiang, China

Received date: 2022-07-15

  Revised date: 2022-09-28

  Online published: 2023-03-31

Abstract

Accurate monitoring of runoff from small and medium-sized rivers is of great significance for ecological stability in arid areas. However, it is difficult to accurately retrieve the flow of small and medium-sized rivers by remote sensing. Taking the Zhongfengchang river section of Kashi River in Nilka County, Xinjiang, China, as an example, this study constructed a power function relationship model between river width, water depth, and discharge based on the relationship fitting method and measured hydrological data, unmanned aerial vehicle data, and satellite data. Using the time series of satellite data, the runoff volume of the monitored river section was inferred 24 times in different periods. The results show that when the runoff rate is 0-50 m3·s-1 and 50-100 m3·s-1, the inversion of the runoff rate based on the hydraulic geometry of the river width is optimal, with root mean square errors (RMSEs) of 7.15 m3·s-1 and 2.81 m3·s-1, respectively; when the runoff rate is 100-200 m3·s-1 and >200 m3·s-1, the inversion of the hydraulic geometry based on water depth and river width is the best, with RMSEs of 13.37 m3·s-1 and 1.06 m3·s-1, respectively. These findings provide a new method for the fine monitoring and management of runoff of small and medium-sized rivers in areas lacking hydrologic data and have high reference value for flood disaster prediction, hydropower resource development, and water ecosystem restoration.

Cite this article

Leipeng JIANG , Jianli DING , Qingling BAO , Xiangyu GE , Jingming LIU , Jinjie WANG . Runoff estimation with low altitude remote sensing and satellite images[J]. Arid Land Geography, 2023 , 46(3) : 385 -396 . DOI: 10.12118/j.issn.1000-6060.2022.357

References

[1] 王瑾杰, 丁建丽, 张成, 等. 基于SCS模型的新疆博尔塔拉河流域径流模拟[J]. 农业工程学报, 2016, 32(7): 129-135.
[1] [ Wang Jinjie, Ding Jianli, Zhang Cheng, et al. Runoff simulation based on SCS mode in Bortala River Basin in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(7): 129-135. ]
[2] 王颖慧, 丁建丽, 李晓航, 等. 伊犁河流域土地利用/覆被变化对生态系统服务价值的影响——基于强度分析模型[J]. 生态学报, 2022, 42(8): 3106-3118.
[2] [ Wang Yinghui, Ding Jianli, Li Xiaohang, et al. Impact of LUCC on ecosystem services values in the Yili River Basin based on an intensity analysis model[J]. Acta Ecologica Sinica, 2022, 42(8): 3106-3118. ]
[3] 王瑾杰, 丁建丽, 张喆, 等. 干旱区降雨、融雪混合补给下的径流模拟研究——以博尔塔拉河上游流域为例[J]. 干旱区地理, 2016, 39(6): 1238-1246.
[3] [ Wang Jinjie, Ding Jianli, Zhang Zhe, et al. Simulation of runoff of arid area with rainfall and snowmelt based on GF-1 satellite: A case of Bortala River[J]. Arid Land Geography, 2016, 39(6): 1238-1246. ]
[4] 魏桢, 贾海峰, 姜其贵, 等. 再生水补水河道中流速对浮游藻类生长影响的模拟实验[J]. 环境工程学报, 2017, 11(12): 6540-6546.
[4] [ Wei Zhen, Jia Haifeng, Jiang Qigui, et al. Simulation experiment of phytoplankton growth induced by flow velocity in rivers replenished with reclaimed water[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6540-6546. ]
[5] Ruiz J, Macías D, Peters F. Turbulence increases the average settling velocity of phytoplankton cells[J]. Proceedings of the National Academy of Sciences, 2004, 101(51): 17720-17724.
[6] 陈亚宁, 李稚, 方功焕. 中亚天山地区关键水文要素变化与水循环研究进展[J]. 干旱区地理, 2022, 45(1): 1-8.
[6] [ Chen Yaning, Li Zhi, Fang Gonghuan. Changes of key hydrological elements and research progress of water cycle in the Tianshan Mountains, Central Asia[J]. Arid Land Geography, 2022, 45(1): 1-8. ]
[7] 李肖杨, 朱成刚, 马玉其, 等. 新疆孔雀河流域生态基流与天然植被需水量研究[J]. 干旱区地理, 2021, 44(2): 337-345.
[7] [ Li Xiaoyang, Zhu Chenggang, Ma Yuqi, et al. Ecological baseflow and natural vegetation water requirement of Konqi River Basin, Xinjiang[J]. Arid Land Geography, 2021, 44(2): 337-345. ]
[8] Smith L C, Isacks B L, Forster R R, et al. Estimation of discharge from braided glacial rivers using ERS 1 synthetic aperture radar: First results[J]. Water Resources Research, 1995, 31(5): 1325-1329.
[9] Brakenridge G R, Tracy B T, Knox J C. Orbital SAR remote sensing of a river flood wave[J]. International Journal of Remote Sensing, 1998, 19(7): 1439-1445.
[10] Pierre B, Monnier J, Garambois P A, et al. On the assimilation of altimetric data in 1D Saint-Venant river flow models[J]. Advances in Water Resources, 2018, 119: 41-59.
[11] Altenau E H, Pavelsky T M, Moller D, et al. Temporal variations in river water surface elevation and slope captured by AirSWOT[J]. Remote Sensing of Environment, 2019, 224: 304-316.
[12] Wufu A, Yang S T, Chen Y, et al. Estimation of long-term river discharge and its changes in ungauged watersheds in Pamir Plateau[J]. Remote Sensing, 2021, 13(20): 4043, doi: 10.3390/rs13204043.
[13] Wufu A, Chen Y, Yang S T, et al. Changes in glacial meltwater runoff and its response to climate change in the Tianshan region detected using unmanned aerial vehicles (UAVs) and satellite remote sensing[J]. Water, 2021, 13(13): 1753, doi: 10.3390/w13131753.
[14] Leopold L B, Maddock T. The hydraulic geometry of stream channels and some physiographic implications[M]. Washington: US Government Printing Office, 1953.
[15] Rhodes D D. The b-f-m diagram: Graphical representation and interpretation of at-a-station hydraulic geometry[J]. American Journal of Science, 1977, 277(1): 73-96.
[16] Gleason C J, Smith L C. Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry[J]. Proceedings of the National Academy of Sciences, 2014, 111(13): 4788-4791.
[17] Bjerklie D M, Ayotte J D, Cahillane M J. Simulating hydrologic response to climate change scenarios in four selected watersheds of New Hampshire[R]. Reston: US Geological Survey, 2015.
[18] Sichangi A W, Wang L, Yang K, et al. Estimating continental river basin discharges using multiple remote sensing data sets[J]. Remote Sensing of Environment, 2016, 179: 36-53.
[19] 李甲振, 郭新蕾, 巩同梁, 等. 无资料或少资料区河流流量监测与定量反演[J]. 水利学报, 2018, 49(11): 1420-1428.
[19] [ Li Jiazhen, Guo Xinlei, Gong Tongliang, et al. A method estimating natural runoff in regions with none or less data[J]. Journal of Hydraulic Engineering, 2018, 49(11): 1420-1428. ]
[20] 赵长森, 潘旭, 杨胜天, 等. 低空遥感无人机影像反演河道流量[J]. 地理学报, 2019, 74(7): 1392-1408.
[20] [ Zhao Changsen, Pan Xu, Yang Shengtian, et al. Measuring streamflow with low-altitude UAV imagery[J]. Acta Geographica Sinica, 2019, 74(7): 1392-1408. ]
[21] 杨胜天, 王鹏飞, 王娟, 等. 结合无人机航空摄影测量的河道流量估算[J]. 遥感学报, 2021, 25(6): 1284-1293.
[21] [ Yang Shengtian, Wang Pengfei, Wang Juan, et al. River flow estimation method based on UAV aerial photogrammetry[J]. National Remote Sensing Bulletin, 2021, 25(6): 1284-1293. ]
[22] 王鹏飞, 杨胜天, 王娟, 等. 星-机一体的水力几何形态流量估算方法[J]. 水利学报, 2020, 51(4): 492-504.
[22] [ Wang Pengfei, Yang Shengtian, Wang Juan, et al. Discharge estimation with hydraulic geometry using unmanned aerial vehicle and remote sensing[J]. Journal of Hydraulic Engineering, 2020, 51(4): 492-504. ]
[23] 徐文健. 基于卷积神经网络的高分辨率遥感图像上的水体识别技术[D]. 杭州: 浙江大学, 2018.
[23] [ Xu Wenjian. Water recognition technology based on convolutional neural network for high resolution remote sensing images[D]. Hangzhou: Zhejiang University, 2018. ]
[24] 杨知, 欧文浩, 刘晓燕, 等. 基于LinkNet卷积神经网络的高分辨率遥感影像水体信息提取[J]. 云南大学学报(自然科学版), 2019, 41(5): 932-938.
[24] [ Yang Zhi, Ou Wenhao, Liu Xiaoyan, et al. Water information extraction for high resolution remote sensing image based on LinkNet convolutional neural network[J]. Journal of Yunnan University (Natural Sciences Edition), 2019, 41(5): 932-938. ]
[25] Gleason C J, Smith L C, Lee J. Retrieval of river discharge solely from satellite imagery and at-many-stations hydraulic geometry: Sensitivity to river form and optimization parameters[J]. Water Resources Research, 2014, 50(12): 9604-9619.
[26] Smith L C, Lsacks B L, Bloom A L, et al. Estimation of discharge from three braided rivers using synthetic aperture radar satellite imagery: Potential application to ungaged basins[J]. Water Resources Research, 1996, 32(7): 2021-2034.
[27] Brakenridge R, Anderson E. Transboundary floods: Reducing risks through flood management[M]. Burlington: Springer, 2006: 1-12.
[28] Bjerklie D M, Moller D, Smith L C, et al. Estimating discharge in rivers using remotely sensed hydraulic information[J]. Journal of Hydrology, 2005, 309(1): 191-209.
[29] 史宜梦, 刘希胜, 朱文彬, 等. 基于GEE云平台的黄河源区河流径流量遥感反演研究[J]. 遥感技术与应用, 2022, 37(1): 186-195.
[29] [ Shi Yimeng, Liu Xisheng, Zhu Wenbin, et al. Research on inversion of river discharge in high mountain region based on GEE platform[J]. Remote Sensing Technology and Application, 2022, 37(1): 186-195. ]
[30] Huang Q, Long D, Du M D, et al. Discharge estimation in high-mountain regions with improved methods using multisource remote sensing: A case study of the upper Brahmaputra River[J]. Remote Sensing of Environment, 2018, 219: 115-134.
[31] 刘昌明, 门宝辉, 宋进喜. 河道内生态需水量估算的生态水力半径法[J]. 自然科学进展, 2007, 17(1): 42-48.
[31] [ Liu Changming, Men Baohui, Song Jinxi. Ecological hydraulic radius method for estimating ecological water demand in river[J]. Progress in Natural Science, 2007, 17(1): 42-48. ]
Outlines

/