Hydrology and Water Resources

Ice-water classification in Inner Mongolia reach of the Yellow River based on remote sensing images

  • Yongguang ZHAI ,
  • Xin ZHANG ,
  • Honglan JI ,
  • Xianyou MOU ,
  • Baosen ZHANG
Expand
  • 1. College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, Inner mongolia, China
    2. Yellow River Institute of Hydraulic Research, Zhengzhou 450003, Henan, China

Received date: 2021-08-03

  Revised date: 2021-10-10

  Online published: 2022-05-31

Abstract

Timely delivery of detailed information on the spatial distribution of river ice during ice-flood season is highly valuable for predicting, and improving communication on, ice disaster. Remote sensing technology provides a key method for obtaining the spatial distribution of river ice. However, the large amount of suspended sediment in the Yellow River represents a challenge to high-precision discrimination between ice and water based on remote sensing technology. Taking the Inner Mongolia reach of the Yellow River as an example, this study compares and evaluates the performance of five indices in the classification of river ice and water: near-infrared reflectance; normalized difference water index (NDWI); normalized difference snow index (NDSI); improved normalized snow index (MNDSI); and normalized difference unfrozen water index (NDUWI). The overall classification accuracy and Kappa coefficient (a measure of reliability) were calculated for each index, and the threshold stability of each index was analyzed. The results show that NDUWI achieves the highest accuracy and reliability (Kappa coefficient) in each studied subregion. The overall classification accuracy and Kappa coefficient of NDUWI are more than 90.0% and 0.90, respectively, and the optimal discrimination threshold between river ice and ice-free water is close to the median value. These results can provide a basis for the selection of ice monitoring methods and optimization of ice-blasting locations on the Yellow River during ice-flood season.

Cite this article

Yongguang ZHAI , Xin ZHANG , Honglan JI , Xianyou MOU , Baosen ZHANG . Ice-water classification in Inner Mongolia reach of the Yellow River based on remote sensing images[J]. Arid Land Geography, 2022 , 45(3) : 763 -773 . DOI: 10.12118/j.issn.1000-6060.2021.347

References

[1] 李超, 李畅游, 李红芳. 黄河(内蒙古段)弯道卡冰过程及数值模拟研究[J]. 水力发电学报, 2015, 34(10): 103-110.
[1] [ Li Chao, Li Changyou, Li Hongfang. Study and simulation on ice jam process in river bends for Inner Mongolia reach of the Yellow River[J]. Journal of Hydroelectric Engineering, 2015, 34(10): 103-110. ]
[2] 高霈生, 靳国厚. 中国北方寒冷地区河冰灾害调查与分析[J]. 中国水利水电科学研究院学报, 2003, 1(2): 82-87.
[2] [ Gao Peisheng, Jin Guohou. Investigation and analysis of river ice disaster in cold regions of North China[J]. Journal of China Institute of Water Resources and Hydropower Research, 2003, 1(2): 82-87. ]
[3] Jeffries M O, Morris K, Kozlenko N. Ice characteristics and processes, and remote sensing[J]. Remote Sensing in Northern Hydrology Measuring Environmental Change, 2005, 163: 63-90.
[4] 李浩杰, 李弘毅, 王建, 等. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[4] [ Li Haojie, Li Hongyi, Wang Jian, et al. Advances in remote sensing of river ice[J]. Advances in Earth Science, 2020, 35(10): 1041-1051. ]
[5] 杨中华, 王卫东, 马浩录. “四星三源”模式监测黄河凌汛的研究与实践[J]. 科技导报, 2006(4): 64-67.
[5] [ Yang Zhonghua, Wang Weidong, Ma Haolu. Monitoring ice flood of Yellow River with “four-satellite and three-resource” model[J]. Science & Technology Review, 2006(4): 64-67. ]
[6] 赵水霞, 李畅游, 李超, 等. 黄河什四份子弯道河冰生消及冰塞形成过程分析[J]. 水利学报, 2017, 48(3): 351-358.
[6] [ Zhao Shuixia, Li Changyou, Li Chao, et al. Processes of river ice and ice-jam formation in Shensifenzi Bend of the Yellow River[J]. Journal of Hydraulic Engineering, 2017, 48(3): 351-358. ]
[7] Chu T, Lindenschmidt K E. Integration of space-borne and air-borne data in monitoring river ice processes in the Slave River, Canada[J]. Remote Sensing of Environment, 2016, 181: 65-81.
[8] Chaouch N, Temimi M, Romanov P, et al. An automated algorithm for river ice monitoring over the Susquehanna River using the MODIS data[J]. Hydrological Processes, 2014, 28(1): 62-73.
[9] Dozier J. Spectral signature of alpine snow cover from the LANDSAT thematic mapper[J]. Remote Sensing of Environment, 1989, 45: 9-22.
[10] 李志杰, 王宁练, 陈安安, 等. 1993-2016年喀喇昆仑山什约克流域冰川变化遥感监测[J]. 冰川冻土, 2019, 41(4): 770-782.
[10] [ Li Zhijie, Wang Ninglian, Chen An’an, et al. Remote sensing monitoring of glacier changes in Shyok Basin of the Karakoram Mountains, 1993-2016 [J]. Journal of Glaciology and Geocryology , 2019, 41(4): 770-782. ]
[11] 高永鹏, 姚晓军, 刘时银, 等. 1956-2017年河西内流区冰川资源时空变化特征[J]. 冰川冻土, 2019, 41(6): 1313-1325.
[11] [ Gao Yongpeng, Yao Xiaojun, Liu Shiyin, et al. Spatial-temporal variation of glacier resources in the Hexi interior from 1956 to 2017[J]. Journal of Glaciology and Geocryology, 2019, 41(6): 1313-1325. ]
[12] 姚晓军, 李龙, 赵军, 等. 近10年来可可西里地区主要湖泊冰情时空变化[J]. 地理学报, 2015, 70(7): 1114-1124.
[12] [ Yao Xiaojun, Li Long, Zhao Jun, et al. Spatial-temporal variations of lake ice in the Hoh Xil region from 2000 to 2011[J]. Acta Geographica Sinica, 2015, 70(7): 1114-1124. ]
[13] 陈鹏, 王勇, 张青, 等. 基于FY-3D/MERSI-Ⅱ归一化积雪指数和MOD10A1的精度对比分析[J]. 干旱区地理, 2020, 43(2): 434-439.
[13] [ Chen Peng, Wang Yong, Zhang Qing, et al. Comparison of the accuracy of normalized snow cover indices between FY-3D/MERSI-II and MODIS[J]. Arid Land Geography, 2020, 43(2): 434-439. ]
[14] Li H J, Li H Y, Wang J, et al. Monitoring high-altitude river ice distribution at the basin scale in the northeastern Tibetan Plateau from a Landsat time-series spanning 1999-2018[J]. Remote Sensing of Environment, 2020, 247: 111915, doi: 10.1016/j.rse.2020. 111915.
[15] 牟献友, 宝山童, 张宝森, 等. 基于遥感影像分析的1989-2019年黄河内蒙古段河冰时空变化[J]. 冰川冻土, doi: 10.7522/j. issn.1000-0240.2020.0058.
[15] Mou Xianyou, Bao Shantong, Zhang Baosen, et al. A satellite-based analysis on spatial-temporal distribution and variation of river ice in Inner Mongolia reach from 1989 to 2019 based on remote sensing image interpretation [J]. Journal of Glaciology and Geocryology, doi: 10.7522/j.issn.1000-0240.2020.0058. ]
[16] 勾鹏, 叶庆华, 魏秋方. 2000-2013年西藏纳木错湖冰变化及其影响因素[J]. 地理科学进展, 2015, 34(10): 1241-1249.
[16] [ Gou Peng, Ye Qinghua, Wei Qiufang.Lake ice change at the Nam Co Lake on the Tibetan Plateau during 2000-2013 and influencing factors[J]. Progress in Geography, 2015, 34(10): 1241-1249. ]
[17] 全栋, 李超, 路新川, 等. 黄河干流头道拐河段凌汛期小流量过程变化及其影响因素研究[J]. 冰川冻土, 2020, 42(2): 620-628.
[17] [ Quan Dong, Li Chao, Lu Xinchuan, et al. A study of low discharge process and impacting factors of Toudaoguai reach in Inner Mongolia of the Yellow River during ice flood period[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 620-628. ]
[18] 罗红春, 冀鸿兰, 郜国明, 等. 黄河什四份子弯道冰期水流及冰塞特征研究[J]. 水利学报, 2020, 51(9): 1089-1100.
[18] [ Luo Hongchun, Ji Honglan, Gao Guoming, et al. Study on the characteristics of flow and ice jam in Shisifenzi bend in the Yellow River during the freeze-up period[J]. Journal of Hydraulic Engineering, 2020, 51(9): 1089-1100. ]
[19] 胡一三. 黄河宁夏内蒙古河段河道整治[J]. 水利规划与设计, 2010(5): 1-4.
[19] [ Hu Yisan. River regulation of the Inner Mongolia reach of the Yellow River in Ningxia[J]. Water Resources Planning and Design, 2010(5): 1-4. ]
[20] McFeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7): 1425-1432.
[21] Hall D K, Riggs G A, Salomonson V V, et al. MODIS snow-cover products[J]. Remote Sensing of Environment, 2002, 83(1-2): 181-194.
[22] 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5): 589-595.
[22] [ Xu Hanqiu. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5): 589-595. ]
[23] Ouma Y O, Tateishi R. A water index for rapid mapping of shoreline changes of five east African Rift Valley lakes: An empirical analysis using Landsat TM and ETM+ data[J]. International Journal of Remote Sensing, 2006, 27(15): 3153-3181.
[24] Landis J R, Koch G G. The measurement of observer agreement for categorical data[J]. Biometrics, 1977, 33(1): 159-174.
[25] Claude C R, Bernier M, Gauthier Y, et al. Remote sensing of lake and river ice[J]. Remote Sensing of the Cryosphere, 2015, 12: 273-306.
[26] 李超. 黄河(内蒙古段)河冰生消演变特性及数值模拟研究[D]. 呼和浩特: 内蒙古农业大学, 2015.
[26] [ Li Chao. Study on characteristics river ice evolution and numerical simulation of the Yellow River (Inner Mongolia reach)[D]. Hohhot: Inner Mongolia Agricultural University, 2015. ]
[27] 田园, 张雪芹, 孙瑞. 基于多源、 多时相遥感影像的高原湖泊提取及其不确定性--以西藏羊卓雍错流域为例[J]. 冰川冻土, 2012, 34(3): 563-572.
[27] [ Tian Yuan, Zhang Xueqin, Sun Rui. Extracting alpine lake information based on multi-source and multi-temporal satellite images and its uncertainty analysis: A case study in Yamzhog Yumco Basin, south Tibet[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 563-572. ]
[28] Jonsson P, Eklundh L. Seasonality extraction by function fitting to time-series of satellite sensor data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8): 1824-1832.
[29] Medina C, Gomez-Enri J, Alonso J, et al. Water volume variations in Lake Izabal (Guatemala) from in situ measurements and ENVISAT radar altimeter (RA-2) and advanced synthetic aperture radar (ASAR) data products[J]. Journal of Hydrology, 2010, 382(1-4): 34-48.
[30] 秦启勇, 李雪梅, 张博, 等. 2000-2019年赛里木湖湖冰物候特征变化[J/OL]. 干旱区地理. [2021-09-26]. .
[30] Qin Qiyong, Li Xuemei, Zhang Bo, et al. Change of ice phenology in the Sayram Lake from 2000 to 2019[J/OL]. Arid Land Geography. [2021-09-26]. . ]
[31] 高永鹏, 姚晓军, 刘时银, 等. 冰川冰储量计算方法及发展趋势[J]. 干旱区地理, 2018, 41(6): 1204-1213.
[31] [ Gao Yongpeng, Yao Xiaojun, Liu Shiyin, et al. Methods and future trend of ice volume calculation of glacier[J]. Arid Land Geography, 2018, 41(6): 1204-1213. ]
[32] 庞毓雯, 黄雨馨, 巩志, 等. 基于多光谱遥感的湖冰物候监测方法研究进展[J]. 海洋湖沼通报, 2020(2): 90-99.
[32] [ Pang Yuwen, Huang Yuxin, Gong Zhi, et al. Advances in phenological monitoring of lake ice based on multi-spectral remote sensing[J]. Transactions of Oceanology and Limnology, 2020(2): 90-99. ]
[33] 魏秋方, 叶庆华. 湖冰遥感监测方法综述[J]. 地理科学进展, 2010, 29(7): 803-810.
[33] [ Wei Qiufang, Ye Qinghua. Review of lake ice monitoring by remote sensing[J]. Progress in Geography, 2010, 29(7): 803-810. ]
[34] Ulaby F T, Moore R K, Fung A K. Microwave remote sensing of alpine snow[J]. Institute of Electrical and Electronics Engineering, 2007, 12(7): 1223-1227.
[35] 许健, 王掌权, 任建威, 等. 原状黄土冻融过程渗透特性试验研究[J]. 水利学报, 2016, 47(9): 1208-1217.
[35] [ Xu Jian, Wang Zhangquan, Ren Jianwei, et al. Experimental research on permeability of undisturbed loess during the freeze-thaw process[J]. Journal of Hydraulic Engineering, 2016, 47(9): 1208-1217. ]
[36] 王延贵, 匡尚富. 河岸崩塌类型与崩塌模式的研究[J]. 泥沙研究, 2014, 12(1): 13-20.
[36] [ Wang Yangui, Kuang Shangfu. Study of types and collapse modes of bank failures[J]. Journal of Sediment Research, 2014, 12(1): 13-20. ]
[37] 可素娟, 吕光圻, 任志远. 黄河巴彦高勒河段冰塞机理研究[J]. 水利学报, 2000(7): 66-69.
[37] [ Ke Sujuan, Lü Guangyin, Ren Zhiyuan. Study on mechanism of ice jam formation in Bayangaole section of Yellow River[J]. Journal of Hydraulic Engineering, 2000(7): 66-69. ]
[38] 秦毅, 张晓芳, 王凤龙, 等. 黄河内蒙古河段冲淤演变及其影响因素[J]. 地理学报, 2011, 66(3): 324-330.
[38] [ Qin Yi, Zhang Xiaofang, Wang Fenglong, et al. Scour and silting evolution and its influencing factors in Inner Mongolia reach[J]. Acta Geographica Sinica, 2011, 66(3): 324-330. ]
[39] 康玲玲, 王云璋, 陈发中, 等. 黄河上游宁蒙河段气温变化对凌情影响的分析[J]. 冰川冻土, 2001, 23(3): 318-322.
[39] [ Kang Lingling, Wang Yunzhang, Chen Fazhong, et al. Analysis on effect of air temperature on ice jam floods at Ningmeng reaches of the Yellow River[J]. Journal of Glaciology and Geocryology, 2001, 23(3): 318-322. ]
[40] Kropáček J, Maussion F, Chen F, et al. Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data[J]. The Cryosphere, 2013, 7(1): 287-301.
Outlines

/