Climate Change

Response of seasonal frozen soil to climate change on a typical steppe of Inner Mongolia during 1981—2018

  • Yue SU ,
  • Cunhou ZHANG ,
  • Amuersana ,
  • Ke LI
Expand
  • 1. Inner Mongolia Autonomous Region Meteorological Disaster Monitoring and Warning Center, Hohhot 010051, Inner Mongolia, China
    2. Inner Mongolia Autonomous Region Ecological and Agricultural Meteorology Center, Hohhot 010051, Inner Mongolia, China
    3. Hohhot Bureau of Meteorology, Hohhot 010000, Inner Mongolia, China
    4. Xuzhou Bureau of Meteorology, Xuzhou 221000, Jiangsu, China

Received date: 2021-07-13

  Revised date: 2021-10-26

  Online published: 2022-05-31

Abstract

This study investigates patterns of seasonally frozen soil in the context of climate change and assesses meteorological factors affecting variations in maximum frozen soil depth. Spatial and temporal characteristics of maximum frozen soil depth were evaluated for an area of typical steppe in Inner Mongolia, northern China over the most recent 38 years (1981—2018). Interannual and interdecadal variations were analyzed statistically using climate tendency rate, cumulative distance level, Mann-Kendall methods, and multiple linear regression. Meteorological data such as temperature, wind speed and relative humidity were used to analyze potential controls on maximum frozen soil depth. The study found that, for seasonally frozen soil of the Inner Mongolian steppe: (1) Soil typically freezes from September-November and thaws from April-June, with a maximum frozen soil depth of 100-280 cm attained in February-March. (2) Interannual variations in maximum frost depth can be classified into three patterns (lower open parabolic, upper open parabolic, and sinusoidal), with 68% of stations showing a trend of decreasing depth over time. (3) Interdecadal variations can also be divided into three types (decreasing chronologically, decreasing then increasing, and no clear pattern), with 50% of stations recording progressively shallower depths before 1989 followed by a change to a trend of thickening with time. (4) Multiple linear regression suggests that temperature freezing index, annual mean wind speed, and annual extreme minimum temperature had significant effects on maximum frozen soil depth.

Cite this article

Yue SU , Cunhou ZHANG , Amuersana , Ke LI . Response of seasonal frozen soil to climate change on a typical steppe of Inner Mongolia during 1981—2018[J]. Arid Land Geography, 2022 , 45(3) : 684 -694 . DOI: 10.12118/j.issn.1000-6060.2021.317

References

[1] 周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000: 10-12.
[1] [ Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Permafrost in China[M]. Beijing: Science Press, 2000: 10-12. ]
[2] 蒋复初, 吴锡浩, 王书兵, 等. 中国大陆多年冻土线空间分布基本特征[J]. 地质力学学报, 2003, 9(4): 303-312.
[2] [ Jiang Fuchu, Wu Xihao, Wang Shubing, et al. Basic features of spatial distribution of the limits of permafrost in China[J]. Journal of Geomechanics, 2003, 9(4): 303-312. ]
[3] Anisimov O, Reneva S. Permafrost and changing climate: The Russian perspective[J]. Ambio, 2006, 35(4): 169-175.
[4] 张中琼, 吴青柏. 气候变化情景下青藏高原多年冻土活动层深度变化预测[J]. 冰川冻土, 2012, 34(3): 505-511.
[4] [ Zhang Zhongqiong, Wu Qingbai. Predicting changes of active layer thickness on the Qinghai-Tibet Plateau as climate warming[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 505-511. ]
[5] 高思如, 曾文钊, 吴青柏, 等. 1990-2014年西藏季节冻土最大冻结深度的时空变化[J]. 冰川冻土, 2018, 40(2): 223-230.
[5] [ Gao Siru, Zeng Wenzhao, Wu Qingbai, et al. Temporal and spatial variations of the maximum frozen depth of seasonally frozen soil in Tibet from 1990 to 2014[J]. Journal of Glaciology and Geocryology, 2018, 40(2): 223-230. ]
[6] 张明礼, 温智, 薛珂, 等. 北麓河地区多年冻土地表能量收支分析[J]. 干旱区资源与环境, 2016, 30(9): 134-138.
[6] [ Zhang Mingli, Wen Zhi, Xue Ke, et al. Surface energy budget analysis in permafrost region of Beiluhe area[J]. Journal of Arid Land Resources and Environment, 2016, 30(9): 134-138. ]
[7] 李元华, 安月改. 河北省冻土气候变化初探[J]. 干旱区资源与环境, 2005, 36(6): 445-449.
[7] [ Li Yuanhua, An Yuegai. Primary study on the change of frozen soil in the Hebei region[J]. Journal of Arid Land Resources and Environment, 2005, 36(6): 445-449. ]
[8] Camill P. Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming[J]. Climatic Change, 2005, 68: 135-152.
[9] Anisimov O A, Nelson F E. Permafrost zonation and climate change in the northern Hemisphere: Results from transient general circulation models[J]. Climatic Change, 1997, 35(2): 241-258.
[10] 沈永平, 苏宏超, 王国亚, 等. 新疆冰川、积雪对气候变化的响应(I): 水文效应[J]. 冰川冻土, 2013, 35(3): 513-527.
[10] [ Shen Yongping, Su Hongchao, Wang Guoya, et al. The responses of glaciers and snow cover to climate change in Xinjiang (I): Hydrological effect[J]. Journal of Glaciology and Geocryology, 2013, 35(3): 513-527. ]
[11] 秦大河, 丁一汇, 王绍武, 等. 中国西部环境演变及其影响研究[J]. 地学前缘, 2002, 9(2): 321-328.
[11] [Qin Dahe, Ding Yihui, Wang Shaowu, et al. A study of environment change and its impacts in western China[J]. Earth Science Frontiers, 2002, 9(2): 321-328. ]
[12] 刘小宁, 李庆祥. 我国最大冻土深度变化及初步解释[J]. 应用气象学报, 2003, 14(3): 299-308.
[12] [ Liu Xiaoning, Li Qingxiang. Change of maximum frozen soil depth in China and its primary explanation[J]. Journal of Applied Meteorological Science, 2003, 14(3): 299-308. ]
[13] 徐敩祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2010: 102-103.
[13] [ Xu Xuezu, Wang Jiacheng, Zhang Lixin. Frozen soil physics[M]. Beijing: Science Press, 2010: 102-103. ]
[14] Tokumoto I, Noborio K, Koga K. Coupled water and heat flow in a grass field with aggregated Andisol during soil-freezing periods[J]. Cold Regions Science & Technology, 2010, 62(2): 98-106.
[15] Sinha T, Cherkauer K A. Time series analysis of soil freeze and thaw processes in Indiana[J]. Journal of Hydrometeorology, 2008, 9(5): 936-950. http://journals.ametsoc.org/doi/10.1175/2008JHM934.1
[16] Fu Q, Hou R, Li T, et al. The functions of soil water and heat transfer to the environment and associated response mechanisms under different snow cover conditions[J]. Geoderma, 2018, 325: 9-17. https://linkinghub.elsevier.com/retrieve/pii/S0016706117311916
[17] Wlostowski A N, Gooseff M N, Adams B J. Soil moisture controls the thermal habitat of active layer soils in the McMurdo Dry Valleys, Antarctica[J]. Journal of Geophysical Research Biogeosciences, 2018, 123(1): G004018, doi: 10.1002/2017JG004018.
[18] 高荣, 韦志刚, 董文杰, 等. 20世纪后期青藏高原积雪和冻土变化及其与气候变化的关系[J]. 高原气象, 2003, 22(2): 191-196.
[18] [ Gao Rong, Wei Zhigang, Dong Wenjie, et al. Variation of the snow and frozen soil over Qinghai-Xizang Plateau in the late twentieth century and their relations to climate change[J]. Plateau Meteorology, 2003, 22(2): 191-196. ]
[19] 姚作新, 李秦, 刘卫平, 等. 1960-2015年新疆塔什库尔干河谷季节性冻土对气候变化的响应[J]. 干旱区地理, 2017, 40(2): 257-265.
[19] [ Yao Zuoxin, Li Qin, Liu Weiping, et al. Response of seasonal frozen soil to climate change in Taxkorgan River Valley of Xinjiang during 1960-2015[J]. Arid Land Geography, 2017, 40(2): 257-265. ]
[20] 王艳丽, 息涛, 张鹏, 等. 1961-2010年辽宁省季节性冻土变化特征分析[J]. 现代农业科技, 2013(21): 241-242.
[20] [ Wang Yanli, Xi Tao, Zhang Peng, et al. Analysis on the characteristics of seasonal frozen soil changes in Liaoning Province from 1961 to 2010[J]. Modern Agricultural Science and Technology, 2013(21): 241-242. ]
[21] 杨晓玲, 汪宗成, 周华, 等. 河西走廊东部冻土初、终日的变化特征分析[J]. 干旱区资源与环境, 2017, 31(6): 117-122.
[21] [ Yang Xiaoling, Wang Zongcheng, Zhou Hua, et al. Variation characteristics of frozen soil first and last dates in Hexi Corridor eastern[J]. Journal of Arid Land Resources and Environment, 2017, 31(6): 117-122. ]
[22] 杜军, 建军, 洪健昌, 等. 1961-2010年西藏季节性冻土对气候变化的响应[J]. 冰川冻土, 2012, 34(3): 513-521.
[22] [ Du Jun, Jian Jun, Hong Jianchang, et al. Response of seasonal frozen soil to climate change on Tibet region from 1961 to 2010[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 513-521. ]
[23] 张存厚. 内蒙古草原地上净初级生产力对气候变化响应的模拟[D]. 呼和浩特: 内蒙古农业大学, 2013.
[23] [ Zhang Cunhou. Responses of ANPP to climate change in Inner Mongolia grassland a simulation based on century model[D]. Hohhot: Inner Mongolia Agricultural University, 2013. ]
[24] 许坤鹏, 武世亮, 马孝义, 等. 基于主成分分析土壤水分扩散率单一参数模型的BP神经网络模型[J]. 干旱区地理, 2015, 38(1): 76-82.
[24] [ Xu Kunpeng, Wu Shiliang, Ma Xiaoyi, et al. BP artificial neural network model of one-parameter soil moisture diffusivity model based on principal components analysis[J]. Arid Land Geography, 2015, 38(1): 76-82. ]
[25] 朱成刚, 艾克热木·阿布拉, 李卫红, 等. 塔里木河下游生态输水条件下胡杨林生态系统恢复研究[J]. 干旱区地理, 2021, 44(3): 629-636.
[25] [ Zhu Chenggang, Abula Aikeremu, Li Weihong, et al. Ecosystem restoration of Populus euphratica forest under the ecological water conveyance in the lower reaches of Tarim River[J]. Arid Land Geography, 2021, 44(3): 629-636. ]
[26] 蔡迪文, 张克存, 安志山, 等. 积沙影响下伏冻土的水热耦合模型研究[J]. 干旱区地理, 2017, 40(3): 523-532.
[26] [ Cai Diwen, Zhang Kecun, An Zhishan, et al. Coupled hydrothermal model of underlying permafrost influenced by sand accumulation[J]. Arid Land Geography, 2017, 40(3): 523-532. ]
[27] Zimov S A, Schuur E A G, Chapin F S. Permafrost and the Global Carbon Budget[J]. Science, 2006, 312: 1612-1613.
[28] 彭小清. 北半球季节冻土时空变化特征及其对气候变化的响应[D]. 兰州: 兰州大学, 2017.
[28] [ Peng Xiaoqing. Spatial-temporal variations of seasonally frozen ground and its response to climate change in the northern Hemisphere[D]. Lanzhou: Lanzhou University, 2017. ]
[29] 毛德华, 王宗明, 宋开山, 等. 东北多年冻土区植被NDVI变化及其对气候变化和土地覆被变化的响应[J]. 中国环境科学, 2011, 31(2): 283-292.
[29] [ Mao Dehua, Wang Zongming, Song Kaishan, et al. The vegetation NDVI variation and its responses to climate change and LUCC from 1982 to 2006 year in northeast permafrost region[J]. China Environmental Science, 2011, 31(2): 283-292. ]
[30] 胡洁, 张桐瑞, 孟德惠, 等. 内蒙古典型草原8种优势植物养分回收特征[J]. 中国草地学报, 2021, 43(3): 37-43.
[30] [ Hu Jie, Zhang Tongrui, Meng Dehui, et al. Plant nutrients resorption characteristics of eight dominant species in typical steppe of Inner Mongolia[J]. Chinese Journal of Grassland, 2021, 43(3): 37-43. ]
[31] 廖莹, 范继辉, 李怡颖, 等. 1978-2017年西藏高原冻融指数时空变化特征[J]. 草业科学, 2021, 38(6): 1035-1046.
[31] [ Liao Ying, Fan Jihui, Li Yiying, et al. Spatiotemporal variations in freezing and thawing indices on the Tibetan Plateau during 1978-2017[J]. Pratacultural Science, 2021, 38(6): 1035-1046. ]
[32] 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 1999: 37-63.
[32] [ Wei Fengying. Modern climate statistics diagnosis and prediction technology[M]. Beijing: China Meteorological Press, 1999: 37-63. ]
[33] 常晓丽, 兰爱玉, 帖利民, 等. 大兴安岭西坡多年冻土地温变化模拟[J]. 湖南科技大学学报(自然科学版), 2021, 36(2): 21-27.
[33] [ Chang Xiaoli, Lan Aiyu, Tie Limin, et al. Modelled thermal of permafrost on the western slope of the Da Xing’anling Mountains[J]. Journal of Hunan University of Science and Technology (Natural Science Edition), 2021, 36(2): 21-27. ]
[34] 刘小宁, 李庆祥. 我国最大冻土深度变化及初步解释[J]. 应用气象学报, 2003, 14(3): 299-308.
[34] [ Liu Xiaoning, Li Qingxiang. Change of maximum frozen soil depth in China and its primary explanation[J]. Journal of Applied Meteorological Science, 2003, 14(3): 299-308. ]
[35] 任福民, 翟盘茂. 1951-1990年中国极端气温变化分析[J]. 大气科学, 1998, 22(2): 217-227.
[35] [ Ren Fumin, Zhai Panmao. Study on changes of China’s extreme temperatures during 1951-1990[J]. Scientia Atmospherica Sinica, 1998, 22(2): 217-227. ]
[36] 金东艳, 高琼. 风速及刈割对草原土壤水分与生产力的影响[J]. 干旱区研究, 2015, 32(3): 48-53.
[36] [ Jin Dongyan, Gao Qiong. Impacts of wind and mowing on soil moisture and productivity in steppe[J]. Arid Zone Research, 2015, 32(3): 48-53. ]
[37] 白云. 祁连山不同植被类型覆盖下冻土水热特征变化研究[D]. 兰州: 甘肃农业大学, 2020.
[37] [ Bai Yun. Study on variations of the hydro-thermal characteristics of frozen under different vegetation types in Qilian Mountain[D]. Lanzhou: Gansu Agricultural University, 2020. ]
[38] 李林, 朱西德, 汪青春, 等. 青海高原冻土退化的若干事实揭示[J]. 冰川冻土, 2005, 27(3): 320-328.
[38] [ Li Lin, Zhu Xide, Wang Qingchun, et al. Mapping and analyses of permafrost change in the Qinghai Plateau using GIS[J]. Journal of Glaciology and Geocryology, 2005, 27(3): 320-328. ]
[39] 金会军, 王绍令, 吕兰芝, 等. 黄河源区冻土特征及退化趋势[J]. 冰川冻土, 2010, 32(1): 10-17.
[39] [ Jin Huijun, Wang Shaoling, Lü Lanzhi, et al. Features and degradation of frozen ground in the sources area of the Yellow River, China[J]. Journal of Glaciology and Geocryology, 2010, 32(1): 10-17. ]
[40] 高春香, 苏立娟, 宋进华, 等. 内蒙古东北部冻土分布与地温关系[J]. 内蒙古气象, 2004(1): 19-22.
[40] [ Gao Chunxiang, Su Lijuan, Song Jinhua, et al. The relationship between the distribution of frozen soil and ground temperature in northeastern Inner Mongolia[J]. Meteorology Journal of Inner Mongolia, 2004(1): 19-22. ]
Outlines

/