Arid Land Geography ›› 2022, Vol. 45 ›› Issue (1): 176-184.doi: 10.12118/j.issn.1000–6060.2021.141
• Biology and Pedology • Previous Articles Next Articles
WANG Fei1,2(),GUO Shujiang1,3(),JI Yongfu1,3,ZHANG Yinghua1,HAN Fugui1,2,ZHANG Yunian1,2,ZHANG Weixing1,SONG Dacheng1
Received:
2021-03-26
Revised:
2021-10-18
Online:
2022-01-25
Published:
2022-01-21
Contact:
Shujiang GUO
E-mail:zmffei@126.com;shujguo@126.com
WANG Fei,GUO Shujiang,JI Yongfu,ZHANG Yinghua,HAN Fugui,ZHANG Yunian,ZHANG Weixing,SONG Dacheng. Relationship between soil factors and leaf functional traits of Nitraria tangutorum shrub at different succession stages[J].Arid Land Geography, 2022, 45(1): 176-184.
Tab. 1
Shapes, vegetation and soil characteristics of Nitraria tangutorum shrub at different succession stages"
演替阶段 | 迎风坡长/cm | 背风坡长/cm | 高度/cm | 植被生长状况 | 沙堆土壤状况 |
---|---|---|---|---|---|
发育阶段 | 240 | 375 | 80 | 迎风坡白刺生长较好,结实量大;背风坡白刺稀少 | 迎风坡为流沙,背风坡有少量结皮 |
稳定阶段 | 560 | 540 | 182 | 迎风坡、背风坡白刺多株生长,长势较好,结实多 | 迎风坡、背风坡均有结皮,沙堆以下为黏土丘间地 |
衰退阶段 | 635 | 618 | 145 | 白刺多株生长,枯枝率高,结实率低 | 迎风坡、背风坡均为结皮,较厚、坚固,沙堆旁边为黏土丘间地 |
严重衰退阶段 | 325 | 230 | 100 | 大多数已经枯死 | 部分结皮风蚀破裂 |
Tab. 2
Characteristics of leaf functional traits of Nitraria tangutorum at different succession stages"
叶功能性状 | 演替阶段 | 平均值±标准误 | 变异系数/% | |||
---|---|---|---|---|---|---|
发育阶段 | 稳定阶段 | 衰退阶段 | 严重衰退阶段 | |||
叶长度/cm | 1.93±0.06a | 1.80±0.08a | 1.83±0.09a | 1.77±0.07a | 1.83±0.03 | 3.82 |
叶宽度/cm | 0.66±0.04a | 0.65±0.02a | 0.65±0.05a | 0.66±0.02a | 0.65±0.01 | 0.54 |
叶厚度/mm | 0.42±0.01b | 0.45±0.02b | 0.51±0.02a | 0.51±0.01a | 0.47±0.02 | 9.77 |
叶片含水量/% | 75.88±1.35a | 75.74±0.92a | 73.00±0.20a | 73.41±0.76a | 74.51±0.76 | 2.03 |
比叶面积/cm2·mg-1 | 0.045±0.005a | 0.054±0.003a | 0.050±0.002a | 0.041±0.005a | 0.048±0.003 | 11.99 |
叶干物质含量/% | 18.77±0.89b | 19.73±0.72b | 23.00±0.22a | 22.28±0.79a | 20.95±1.01 | 9.63 |
叶全碳含量/mg·g-1 | 412.58±3.54a | 414.84±1.71a | 413.78±0.43a | 411.10±3.66a | 413.07±0.81 | 0.39 |
叶全氮含量/mg·g-1 | 32.25±0.42b | 35.92±1.62ab | 37.01±2.87ab | 38.33±0.44a | 35.88±1.31 | 7.28 |
叶全磷含量/mg·g-1 | 1.01±0.03b | 1.18±0.01a | 1.00±0.05b | 0.98±0.04b | 1.04±0.05 | 8.75 |
叶稳定碳同位素/‰ | -25.42±0.35a | -25.67±0.62a | -26.56±0.87a | -24.85±0.14a | -25.62±0.35 | 2.77 |
Tab. 3
Correlation coefficients of leaf functional traits of Nitraria tangutorum"
叶功能性状 | 叶长度 | 叶宽度 | 叶厚度 | 叶片 含水量 | 比叶 面积 | 叶干物质 含量 | 叶全碳 含量 | 叶全氮 含量 | 叶全磷 含量 | 叶稳定碳 同位素 |
---|---|---|---|---|---|---|---|---|---|---|
叶长度 | 1.00 | |||||||||
叶宽度 | 0.312 | 1.00 | ||||||||
叶厚度 | -0.757 | 0.163 | 1.00 | |||||||
叶片含水量 | 0.553 | -0.339 | -0.963* | 1.00 | ||||||
比叶面积 | -0.016 | -0.907 | -0.230 | 0.303 | 1.00 | |||||
叶干物质含量 | -0.644 | 0.185 | 0.983* | -0.987* | -0.172 | 1.00 | ||||
叶全碳含量 | 0.070 | -0.879 | -0.297 | 0.353 | 0.996** | -0.230 | 1.00 | |||
叶全氮含量 | -0.950* | -0.114 | 0.923 | -0.785 | -0.089 | 0.849 | -0.172 | 1.00 | ||
叶全磷含量 | -0.125 | -0.928 | -0.464 | 0.645 | 0.786 | -0.514 | 0.776 | -0.141 | 1.00 | |
叶稳定碳同位素 | -0.164 | 0.352 | -0.144 | 0.247 | -0.679 | -0.299 | -0.689 | 0.017 | -0.081 | 1.00 |
Tab. 4
Initial factor loading matrix and contribution rate of principal components"
叶功能性状 | 主成分1 | 主成分2 | 主成分3 | 主成分4 | 综合得分 | 综合位次 | 公因子方差 |
---|---|---|---|---|---|---|---|
叶长度 | 0.855 | 0.377 | -0.308 | 0.106 | 0.051 | 5 | 0.687 |
叶宽度 | -0.797 | -0.437 | 0.273 | -0.275 | -0.106 | 9 | 0.610 |
叶厚度 | 0.736 | 0.491 | 0.308 | 0.007 | 0.294 | 1 | 0.878 |
叶片含水量 | 0.675 | -0.48 | -0.011 | -0.046 | -0.246 | 10 | 0.975 |
比叶面积 | -0.525 | 0.436 | -0.356 | 0.478 | 0.033 | 6 | 0.875 |
叶干物质含量 | -0.317 | 0.831 | -0.031 | -0.288 | 0.218 | 2 | 0.979 |
叶全碳含量 | 0.244 | -0.579 | -0.346 | 0.528 | -0.027 | 8 | 0.793 |
叶全氮含量 | -0.004 | 0.173 | 0.739 | 0.403 | 0.205 | 3 | 0.739 |
叶全磷含量 | -0.411 | 0.158 | -0.574 | 0.295 | -0.020 | 7 | 0.821 |
叶稳定碳同位素 | -0.185 | 0.05 | 0.457 | 0.701 | 0.144 | 4 | 0.736 |
特征值 | 3.001 | 2.078 | 1.595 | 1.420 | |||
贡献率/% | 30.009 | 20.776 | 15.954 | 14.198 | |||
累计贡献率/% | 30.009 | 50.785 | 66.739 | 80.938 |
Tab. 5
Characteristics of soil factors of Nitraria tangutorum shrub at different succession stages"
演替阶段 | 含水量/% | 有机质/% | 全氮/% | 速效磷/mg·(100g)-1 | 电导率/μS | pH |
---|---|---|---|---|---|---|
发育阶段 | 0.47±0.07b | 0.115±0.014c | 0.007±0.001b | 0.59±0.21b | 370.67±51.18b | 8.702±0.103a |
稳定阶段 | 0.62±0.07ab | 0.208±0.009bc | 0.007±0.000b | 0.76±0.14b | 447.58±26.08ab | 8.685±0.056a |
衰退阶段 | 0.77±0.07a | 0.450±0.084a | 0.017±0.003a | 1.61±0.15a | 681.08±36.64a | 8.345±0.096b |
严重衰退阶段 | 0.46±0.06b | 0.343±0.084ab | 0.013±0.000ab | 1.34±0.18a | 567.25±76.25ab | 8.510±0.056ab |
Tab. 6
Stepwise regression analyses of leaf functional traits and soil factors"
叶功能性状 | 逐步回归方程 | 标准化回归系数 | R | P |
---|---|---|---|---|
叶宽度(LW) | LW=0.078SAP+0.562 | BSAP=0.656 | 0.656 | 0.021 |
叶厚度(LT) | LT=7.642STN+0.388 | BSTN=0.823 | 0.823 | 0.001 |
叶片含水量(LWC) | LWC=-2.904SAP+77.749 | BSAP=-0.616 | 0.616 | 0.033 |
叶干物质含量(LDMC) | LDMC=3.507SAP+16.996 | BSAP=0.785 | 0.785 | 0.002 |
叶全氮含量(LNC) | LNC=0.013SEC+29.083 | BSEC=0.748 | 0.748 | 0.013 |
叶稳定碳同位素(δ13C) | δ13C=-3.779SMC-23.429 | BSMC=-0.600 | 0.600 | 0.039 |
[1] | 胡耀升, 么旭阳, 刘艳红. 长白山不同演替阶段森林植物功能性状及其与地形因子间的关系[J]. 生态学报, 2014, 34(20):5915-5924. |
[Hu Yaosheng, Yao Xuyang, Liu Yanhong. The functional traits of forests at different succession stages and their relationship to terrain factors in Changbai Mountains[J]. Acta Ecologica Sinica, 2014, 34(20):5915-5924. ] | |
[2] |
Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821-827.
doi: 10.1038/nature02403 |
[3] |
李丹, 康萨如拉, 赵梦颖, 等. 内蒙古羊草草原不同退化阶段土壤养分与植物功能性状的关系[J]. 植物生态学报, 2016, 40(10):991-1002.
doi: 10.17521/cjpe.2015.0465 |
[Li Dan, Kang Sarula, Zhao Mengying, et al. Relationships between soil nutrients and plant functional traits in different degradation stages of Leymus chinensis steppe in Nei Mongol, China[J]. Chinese Journal of Plant Ecology, 2016, 40(10):991-1002. ]
doi: 10.17521/cjpe.2015.0465 |
|
[4] | Becknell J M, Powers J S. Stand age and soils as drivers of plant functional traits and aboveground biomass in secondary tropical dry forest[J]. Canadian Journal of Forest, 2014, 44(6):604-613. |
[5] |
丁佳, 吴茜, 闫慧, 等. 地形和土壤特性对亚热带常绿阔叶林内植物功能性状的影响[J]. 生物多样性, 2011, 19(2):158-167.
doi: 10.3724/SP.J.1003.2011.10312 |
[Ding Jia, Wu Qian, Yan Hui, et al. Effects of topographic variations and soil characteristics on plant functional traits in a subtropical evergreen broad-leaved forest[J]. Biodiversity Science, 2011, 19(2):158-167. ]
doi: 10.3724/SP.J.1003.2011.10312 |
|
[6] | 刘旻霞, 马建祖. 甘南高寒草甸植物功能性状和土壤因子对坡向的响应[J]. 应用生态学报, 2012, 23(12):3295-3300. |
[Liu Mingxia, Ma Jianzu. Responses of plant functional traits and soil factors to slope aspect in alpine meadow of south Gansu, northwest China[J]. Chinese Journal of Applied Ecology, 2012, 23(12):3295-3300. ] | |
[7] | 施宇, 温仲明, 龚时慧, 等. 黄土丘陵区植物叶片与细根功能性状关系及其变化[J]. 生态学报, 2011, 31(22):6805-6815. |
[Shi Yu, Wen Zhongming, Gong Shihui, et al. Comparisons of relationships between leaf and fine root traits in hilly area of the Loess Plateau, Yanhe River Basin, Shaanxi Province, China[J]. Acta Ecologica Sinica, 2011, 31(22):6805-6814. ] | |
[8] | 孙小妹, 何明珠, 周彬, 等. 霸王根茎叶非结构性碳与C:N:P计量特征对干旱的响应[J]. 干旱区地理, 2021, 44(1):240-249. |
[Sun Xiaomei, He Mingzhu, Zhou Bin, et al. Non-structural carbohydrates and C:N:P stoichiometry of roots, stems, and leaves of Zygophyllum xanthoxylon in responses to xeric condition[J]. Arid Land Geography, 2021, 44(1):240-249. ] | |
[9] | 李晓菲, 李路, 常亚鹏, 等. 雪岭云杉林叶片碳氮化学计量特征及其与土壤理化因子的关系[J]. 干旱区地理, 2019, 42(3):599-605. |
[Li Xiaofei, Li Lu, Chang Yapeng, et al. Stoichiometric characteristics of leaf C and N and their correlation with soil physicochemical factors in Picea schrenkiana forests[J]. Arid Land Geography, 2019, 42(3):599-605. ] | |
[10] | 张增可, 郑心炫, 林华贞, 等. 海岛植物不同演替阶段植物功能性状与环境因子的变化规律[J]. 生态学报, 2019, 39(10):3749-3758. |
[Zhang Zengke, Zheng Xinxuan, Lin Huazhen, et al. Summary of changes in plant functional traits and environmental factors in different successional stages of island plants[J]. Acta Ecologica sinica, 2019, 39(10):3749-3758. ] | |
[11] | 王琇瑜, 黄晓霞, 和克俭, 等. 滇西北高寒草甸植物群落功能性状与土壤理化性质的关系[J]. 草业学报, 2020, 29(8):6-17. |
[Wang Xiuyu, Huang Xiaoxia, He Kejian, et al. The relationship between plant functional traits and soil physicochemical properties in alpine meadows in northwestern Yunnan Province, China[J]. Acta Prataculturae Sinica, 2020, 29(8):6-17. ] | |
[12] | 靳虎甲, 马全林, 张有佳, 等. 石羊河下游白刺灌丛演替发育过程的土壤呼吸及其影响因素分析[J]. 中国沙漠, 2012, 32(1):140-147. |
[Jin Hujia, Ma Quanlin, Zhang Youjia, et al. Soil respiration of Nitraria tangutorum nebkhas at different evolvement stages in lower reaches of Shiyang River and its influencing factors[J]. Journal of Desert Research, 2012, 32(1):140-147. ] | |
[13] | 孙涛, 韩福贵, 安富博, 等. 民勤荒漠绿洲过渡带白刺沙堆土壤呼吸空间异质特征[J]. 草业科学, 2017, 34(4):673-684. |
[Sun Tao, Han Fugui, An Fubo, et al. Spatial heterogeneity of soil respiration of Nitraria tangutorum nebkhas in the desert-oasis ecotone of Minqin[J]. Pratacultural Science, 2017, 34(4):673-684. ] | |
[14] | 韩福贵, 孙涛, 郭树江, 等. 干旱荒漠区不同演替阶段白刺灌丛沙堆土壤呼吸特征及其影响因素分析[J]. 西北林学院学报, 2017, 32(5):1-7. |
[Han Fugui, Sun Tao, Guo Shujiang, et al. Characteristics of soil respiration of Nitraria tangutorum at different succession stages in desert areas & the influencing factors[J]. Journal of Northwest Forestry University, 2017, 32(5):1-7. ] | |
[15] | 马全林, 卢琦, 魏林源, 等. 干旱荒漠白刺灌丛植被演替过程土壤种子库变化特征[J]. 生态学报, 2015, 35(7):2285-2294. |
[Ma Quanlin, Lu Qi, Wei Linyuan, et al. Varying characteristics of soil seed banks during the succession process of Nitraria tangutorum vegetation in an arid desert area[J]. Acta Ecologica Sinica, 2015, 35(7):2285-2294. ] | |
[16] | 赵鹏, 徐先英, 屈建军, 等. 民勤绿洲-荒漠过渡带白刺群落空间分布及其环境解释[J]. 干旱区研究, 2016, 33(5):1003-1011. |
[Zhao Peng, Xu Xianying, Qu Jianjun, et al. Spatial distribution of Nitraria tangutorum communities and its environmental interpretations in the Minqin oasis-desert ecotone[J]. Arid Zone Research, 2016, 33(5):1003-1011. ] | |
[17] | Du J H, Yan P, E Y H. Distribution patterns and characteristics of Nitraria tangutorum nebkha at its different evolvement stages in the Minqin County of Gansu Province[J]. Chinese Journal of Ecology, 2007, 26(8):1165-1170. |
[18] | Kuo S. Methods of soil analysis[M]. Madison, Wisconsin, USA: Soil Science Society of America, Inc., American Society of Agronomy, Inc., 1996: 869-919. |
[19] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 30-204. |
[Bao Shidan. Soil agrochemical analysis[M]. Beijing: China Agriculture Press, 2000: 30-204. ] | |
[20] | 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978: 508-510. |
[Institute of Soil Science, Chinese Academy of Sciences. Soil physical and chemical property analysis[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1978: 508-510. ] | |
[21] | 秦娟, 孔海燕, 刘华. 马尾松不同林型土壤C、N、P、K的化学计量特征[J]. 西北农林科技大学学报(自然科学版), 2016, 44(2):68-76. |
[Qin Juan, Kong Haiyan, Liu Hua. Stoichiometric characteristics of soil C, N, P and K in different Pinus massoniana forests[J]. Journal of Northwest Agriculture and Forestry University (Natural Science Edition), 2016, 44(2):68-76. ] | |
[22] |
钟巧连, 刘立斌, 许鑫, 等. 黔中喀斯特木本植物功能性状变异及其适应策略[J]. 植物生态学报, 2018, 42(5):562-572.
doi: 10.17521/cjpe.2017.0270 |
[Zhong Qiaolian, Liu Libin, Xu Xin, et al. Variations of plant functional traits and adaptive strategy of woody species in a Karst forest of central Guizhou Province, southwestern China[J]. Chinese Journal of Plant Ecology, 2018, 42(5):562-572. ]
doi: 10.17521/cjpe.2017.0270 |
|
[23] | Tilman D. Plant strategies and the dynamics and structure of plant communities[M]. Princeton: Princeton University Press, 1998. |
[24] |
Garnier E, Cortez J, Billès G, et al. Plant functional markers capture ecosystem properties during secondary succession[J]. Ecology, 2004, 85(9):2630-2637.
doi: 10.1890/03-0799 |
[25] | Lajtha K, Michener R H. Stable isotopes in ecology and environmental science[M]. London: Blackwell Scientific Publications, 1994: 1-5. |
[26] |
Chapin F S, Bloom A J, Field C B, et al. Plant responses to multiple environmental factors: Physiological ecology provides tools for studying how interacting environmental resources control plant growth[J]. Bioscience, 1987, 37(1):49-57.
doi: 10.2307/1310177 |
[27] |
Cornwell W K, Schwilk D W, Ackerly D D. A trait-based test for habitat filtering: Convex hull volume[J]. Ecology, 2006, 87(6):1465-1471.
pmid: 16869422 |
[28] |
Ohashi Y, Nakayama N, Saneoka H, et al. Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants[J]. Biologia Plantarum, 2006, 50(1):138-141.
doi: 10.1007/s10535-005-0089-3 |
[29] |
阎恩荣, 王希华, 周武. 天童常绿阔叶林演替系列植物群落的N:P化学计量特征[J]. 植物生态学报, 2008, 32(1):13-22.
doi: 10.3773/j.issn.1005-264x.2008.01.002 |
[Yan Enrong, Wang Xihua, Zhou Wu. N:P stoichiometry in secondary succession in evergreen broadleaved forest, Tiantong, east China[J]. Chinese Journal of Plant Ecology, 2008, 32(1):13-22. ]
doi: 10.3773/j.issn.1005-264x.2008.01.002 |
|
[30] | 韦兰英, 上官周平. 黄土高原不同演替阶段草地植被细根垂直分布特征与土壤环境的关系[J]. 生态学报, 2006, 26(11):3740-3748. |
[Wei Lanying, Shangguan Zhouping. Relationship between vertical distribution of fine root in different successional stages of herbaceous vegetation and soil environment in Loess Plateau[J]. Acta Ecologica Sinica, 2006, 26(11):3740-3748. ] | |
[31] | 刘旻霞, 李俐蓉, 车应弟, 等. 高寒草甸不同演替阶段植物叶片功能性状研究[J]. 植物研究, 2019, 39(5):760-769. |
[Liu Mingxia, Li Lirong, Che Yingdi, et al. Functional traits of plant leaves at different succession stages in alpine meadow[J]. Bulletin of Botanical Research, 2019, 39(5):760-769. ] | |
[32] | 王月, 李程, 李爱德, 等. 白刺沙堆退化与土壤水分的关系[J]. 生态学报, 2015, 35(5):1407-1421. |
[Wang Yue, Li Cheng, Li Aide, et al. The degradation of Nitraria dunes and soil water in Minqin Oasis[J]. Acta Ecologica Sinica, 2015, 35(5):1407-1421. ] | |
[33] | 赵鹏, 徐先英, 纪永福, 等. 民勤绿洲边缘不同演替阶段白刺灌丛水分利用动态[J]. 干旱区资源与环境, 2019, 33(9):169-175. |
[Zhan Peng, Xu Xianying, Ji Yongfu, et al. Water utilization dynamics of Nitraria tangutorum nebkhas in different succession stages at the edge of Minqin Oasis[J]. Journal of Arid Land Resources and Environment, 2019, 33(9):169-175. ] | |
[34] | 杨丽雯, 周海燕, 樊恒文, 等. 沙坡头人工固沙植被生态系统土壤恢复研究进展[J]. 中国沙漠, 2009, 29(6):1116-1123. |
[Yang Liwen, Zhou Haiyan, Fan Hengwen, et al. Advances of soil restoration research on artificial sand-binding vegetation ecosystem in Shapotou Desert region[J]. Journal of Desert Research, 2009, 29(6):1116-1123. ] | |
[35] | 王平, 盛连喜, 燕红, 等. 植物功能性状与湿地生态系统土壤碳汇功能[J]. 生态学报, 2010, 30(24):6990-7000. |
[Wang Ping, Sheng Lianxi, Yan Hong, et al. Plant functional traits influence soil carbon sequestration in wetland ecosystem[J]. Acta Ecologica Sinica, 2010, 30(24):6990-7000. ] | |
[36] | 张慧文, 马剑英, 孙伟, 等. 不同海拔天山云杉叶功能性状及其与土壤因子的关系[J]. 生态学报, 2010, 30(21):5747-5758. |
[Zhang Huiwen, Ma Jianying, Sun Wei, et al. Altitudinal variation in functional traits of Picea schrenkiana var. tianschanica and their relationship to soil factors in Tianshan Mountains, northwest China[J]. Acta Ecologica Sinica, 2010, 30(21):5747-5758. ] | |
[37] | 王贵霞, 李传荣, 许景伟, 等. 沙质海岸5种植被类型土壤物理性状及其水源涵养功能[J]. 水土保持学报, 2005, 19(2):142-146. |
[Wang Guixia, Li Chuanrong, Xu Jingwei, et al. Soil properties and water conservation function of 5 types of vegetation on sandy coast[J]. Journal of Soil and Water Conservation, 2005, 19(2):142-146. ] | |
[38] | 张凯, 侯继华, 何念鹏. 油松叶功能性状分布特征及其控制因素[J]. 生态学报, 2017, 37(3):736-749. |
[Zhang Kai, Hou Jihua, He Nianpeng. Leaf functional trait distribution and controlling factors of Pinus tabuliformis[J]. Acta Ecologica Sinica, 2017, 37(3):736-749. ] | |
[39] | 曹靖, 杨晓东, 吕光辉, 等. 盐分对白刺光合作用及其叶功能性状的影响[J]. 新疆农业科学, 2015, 52(11):2065-2075. |
[Cao Jing, Yang Xiaodong, Lü Guanghui, et al. Effect of soil salinity on the photosynjournal and leaf functional traits of Nitraria[J]. Xinjiang Agricultural Sciences, 2015, 52(11):2065-2075. ] | |
[40] | 苏波, 韩兴国, 李凌浩, 等. 中国东北样带草原区植物δ13C值及水分利用效率对环境梯度的响应[J]. 植物生态学报, 2000, 24(6):648-655. |
[Su Bo, Han Xingguo, Li Linghao, et al. Responses of δ13C value and water use effieicency of plant species to environmental gradients along the grassland zone of northeast China transect[J]. Chines Journal of Plant Ecology, 2000, 24(6):648-655. ] | |
[41] |
Stuiver M, Braziunas T F. Tree cellulose 13C/12C isotope ratios and climatic change[J]. Nature, 1987, 328(6125):58-60.
doi: 10.1038/328058a0 |
[1] | HUANG An, YANG Lian-an, DU Ting, ZHANG Bin, SONG Ying-qiang, WANG An-le, QIN Jin. Spatial distribution of the soil organic matter based on multiple soil factors [J]. , 2015, 38(5): 994-1003. |
|