Arid Land Geography ›› 2022, Vol. 45 ›› Issue (1): 141-152.doi: 10.12118/j.issn.1000–6060.2021.176
• Earth Surface Process • Previous Articles Next Articles
LIANG Xiaolei1(),ZHAI Xiaohui1(
),NIU Qinghe2,HU Zihao3,WANG Tianhu4,LIU Wancheng4
Received:
2021-04-19
Revised:
2021-11-15
Online:
2022-01-25
Published:
2022-01-21
Contact:
Xiaohui ZHAI
E-mail:liangxl@lzb.ac.cn;zhaixiaohui@lzb.ac.cn
LIANG Xiaolei,ZHAI Xiaohui,NIU Qinghe,HU Zihao,WANG Tianhu,LIU Wancheng. Grain-size characteristics of yardang strata sediment in the Dunhuang Yardang National Geopark, northwest China[J].Arid Land Geography, 2022, 45(1): 141-152.
Tab. 1
Grain-size composition of sediments from yardang profiles /%"
样品 | 黏土(<3.9 μm) | 粉沙(3.9~62.5 μm) | 极细沙(62.5~125 μm) | 细沙 (125~250 μm) | 中沙 (250~500 μm) | 粗沙+极粗沙 (500~2000 μm) | |
---|---|---|---|---|---|---|---|
剖面YA | 平均值 | 14.69 | 41.08 | 10.51 | 17.60 | 13.53 | 2.60 |
最小值 | 0.32 | 3.11 | 0.00 | 0.00 | 0.00 | 0.00 | |
最大值 | 51.56 | 85.16 | 41.94 | 53.93 | 54.98 | 37.40 | |
变异系数 | 1.11 | 0.76 | 1.10 | 1.16 | 1.36 | 2.62 | |
剖面YB | 平均值 | 12.13 | 36.82 | 14.04 | 20.66 | 13.31 | 3.03 |
最小值 | 0.63 | 3.01 | 0.10 | 0.00 | 0.00 | 0.00 | |
最大值 | 58.10 | 84.43 | 40.34 | 57.42 | 48.65 | 19.35 | |
变异系数 | 1.25 | 0.81 | 0.90 | 0.97 | 1.28 | 1.75 | |
剖面YC | 平均值 | 18.33 | 35.41 | 8.32 | 13.23 | 14.73 | 9.98 |
最小值 | 0.94 | 3.25 | 0.00 | 0.00 | 0.00 | 0.00 | |
最大值 | 59.50 | 83.38 | 36.57 | 54.42 | 44.20 | 40.25 | |
变异系数 | 1.03 | 0.83 | 1.08 | 1.18 | 1.13 | 1.42 |
Tab. 2
Grain size parameters of sediments from yardang profiles"
样品 | 平均粒径(Mz)/μm | 分选系数(δI) | 偏度(SK1) | 峰度(KG) | |
---|---|---|---|---|---|
剖面YA | 平均值 | 97.20 | 1.38 | 0.28 | 3.39 |
最小值 | 3.66 | 0.64 | -0.23 | 0.75 | |
最大值 | 430.00 | 2.36 | 0.68 | 6.53 | |
变异系数 | 1.13 | 0.25 | 0.56 | 0.46 | |
剖面YB | 平均值 | 99.50 | 1.45 | 0.28 | 3.74 |
最小值 | 3.21 | 0.66 | -0.18 | 0.81 | |
最大值 | 260.00 | 2.63 | 0.51 | 8.24 | |
变异系数 | 0.96 | 0.32 | 0.63 | 0.55 | |
剖面YC | 平均值 | 126.90 | 1.43 | 0.24 | 3.89 |
最小值 | 3.17 | 0.78 | -0.23 | 1.05 | |
最大值 | 400.00 | 2.64 | 0.52 | 14.00 | |
变异系数 | 1.09 | 0.26 | 0.66 | 0.61 |
[1] | 吴正. 风沙地貌与治沙工程学[M]. 北京: 科学出版社, 2003. |
[Wu Zheng. Geomorphology of wind-drift sands and their controlled engineering[M]. Bejing: Science Press, 2003. ] | |
[2] | 何清, 杨兴华, 霍文, 等. 库姆塔格沙漠粒度分布特征及环境意义[J]. 中国沙漠, 2009, 29(1):18-22. |
[He Qing, Yang Xinghua, Huo Wen, et al. Characteristics of sand granularity from Kumtag Desert and its environmental significance[J]. Journal of Desert Research, 2009, 29(1):18-22. ] | |
[3] | 董治宝, 苏志珠, 钱广强, 等. 库姆塔格沙漠风沙地貌[M]. 北京: 科学出版社, 2011. |
[Dong Zhibao, Su Zhizhu, Qian Guangqiang, et al. Aeolian geomorphology of the Kumtagh Desert[M]. Bejing: Science Press, 2011. ] | |
[4] |
Liu B, Qu J, Ning D, et al. Grain-size study of aeolian sediments found east of Kumtagh Desert[J]. Aeolian Research, 2014, 13:1-6.
doi: 10.1016/j.aeolia.2014.01.001 |
[5] |
Gutiérrez-Elorza M, Desir G, Gutiérrez-Santolalla F. Yardangs in the semiarid central sector of the Ebro Depression (NE Spain)[J]. Geomorphology, 2002, 44(1):155-170.
doi: 10.1016/S0169-555X(01)00151-9 |
[6] | 李继彦, 董治宝, 李恩菊, 等. 察尔汗盐湖雅丹地貌沉积物粒度特征研究[J]. 中国沙漠, 2012, 32(5):1187-1192. |
[Li Jiyan, Dong Zhibao, Li Enju, et al. Grain-size characteristics of the deposits from yadang landforms in the Charhan Salt Lake area[J]. Journal of Desert Research, 2012, 32(5):1187-1192. ] | |
[7] | 郜学敏, 董治宝, 段争虎, 等. 柴达木盆地西北部长垄状雅丹沉积物粒度特征[J]. 中国沙漠, 2019, 39(2):79-85. |
[Gao Xuemin, Dong Zhibao, Duan Zhenghu, et al. Grain-size characteristics of long ridge yardangs in the northwestern Qaidam Basin, China[J]. Journal of Desert Research, 2019, 39(2):79-85. ] | |
[8] | 林桂权, 林永崇, 王雪萍. 新疆罗布泊地区白龙堆雅丹地貌形态特征及成因研究[J]. 干旱区地理, 2021, 44(5):1309-1316. |
[Lin Guiquan, Lin Yongchong, Wang Xueping. Morphological characteristics and genesis of Bailongdui yardang landforms in Lop Nur, Xinjiang[J]. Arid Land Geography, 2021, 44(5):1309-1316. ] | |
[9] | Dong Z, Lü P, Lu J, et al. Geomorphology and origin of yardangs in the Kumtagh Desert, northwest China[J]. Geomorphology, 2012, 139:145-154. |
[10] | 夏训诚. 罗布泊地区雅丹地貌的成因[M]. 北京: 科学出版社, 1987. |
[Xia Xuncheng. The cause analysis of yardangs in the Lop Nur[M]. Beijing: Sciences Press, 1987. ] | |
[11] | 郑本兴, 张林源, 胡孝宏. 玉门关西雅丹地貌的分布和特征及形成时代问题[J]. 中国沙漠, 2002, 22(1):40-46. |
[Zheng Benxing, Zhang Linyuan, Hu Xiaohong. Ditribution and characteristics of yardnag landform and its formation period, west of Yumenguan, Gansu[J]. Journal of Desert Research, 2002, 22(1):40-46. ] | |
[12] | 屈建军, 郑本兴, 俞祁浩, 等. 罗布泊东阿奇克谷地雅丹地貌与库姆塔格沙漠形成的关系[J]. 中国沙漠, 2004, 24(3):294-300. |
[Qu Jianjun, Zheng Benxing, Yu Qihao, et al. The yardang landform of Aqik Valley in the east of Lop-Nor and its relationship with the evolution of the Kumtagh Desert[J]. Journal of Desert Research, 2004, 24(3):294-300. ] | |
[13] | 杨更. 新疆雅丹地貌分布特征浅析[J]. 四川地质学报, 2009, 29(增刊2):286-290. |
[Yang Geng. On distribution of the yardang in Xinjiang[J]. Acta Geologica Sichuan, 2009, 29(Suppl. 2):286-290. ] | |
[14] | 牛清河, 屈建军, 李孝泽, 等. 雅丹地貌研究评述与展望[J]. 地球科学进展, 2011, 26(5):516-527. |
[Niu Qinghe, Qu Jianjun, Li Xiaoze, et al. Review and prospect of yardang landforms research[J]. Advances in Earth Science, 2011, 26(5):516-527. ] | |
[15] | 王彦洁, 武法东, 李秀明, 等. 甘肃敦煌雅丹地貌沉积物常量元素地球化学特征及指示意义[J]. 干旱区资源与环境, 2019, 33(4):163-169. |
[Wang Yanjie, Wu Fadong, Li Xiuming, et al. Geochemical features of macro elements in yardang sediments in Dunhuang and the indicative meanings[J]. Journal of Arid Land Resources and Environment, 2019, 33(4):163-169. ] | |
[16] |
Liang X L, Niu Q H, Qu J J, et al. Applying end-member modeling to extricate the sedimentary environment of yardang strata in the Dunhuang Yardang National Geopark, northwestern China[J]. Catena, 2019, 180:238-251.
doi: 10.1016/j.catena.2019.04.029 |
[17] | 韩晋芳, 武法东, 蔡胤璐. 敦煌雅丹沉积物中重矿物特征及其物源指示意义[J]. 干旱区资源与环境, 2020, 34(4):137-143. |
[Han Jinfang, Wu Fadong, Cai Yinlu. Heavy mineral characteristics and its implication for provenance of yardang sediments in Dunhuang[J]. Journal of Arid Land Resources and Environment, 2020, 34(4):137-143. ] | |
[18] | 牛清河, 屈建军, 安志山. 甘肃敦煌雅丹地质公园区风蚀气候侵蚀力特征[J]. 中国沙漠, 2017, 37(3):1-5. |
[Niu Qinghe, Qu Jianjun, An Zhishan. Characteristic of wind erosion climatic erosivity in Dunhuang Yardang Geo-park of Gansu Province[J]. Journal of Arid Land Resources and Environment, 2017, 37(3):1-5. ] | |
[19] | Zhao H, Li G, Sheng Y, et al. Early-middle Holocene lake-desert evolution in northern Ulan Buh Desert, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 331:31-38. |
[20] |
Folk R L, Ward W C. Brazos River bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27(1):3-26.
doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D |
[21] |
Folk R L. A review of grain-size parameters[J]. Sedimentology, 1966, 6(2):73-93.
doi: 10.1111/sed.1966.6.issue-2 |
[22] |
Sun D, Bloemendal J, Rea D K, et al. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology, 2002, 152:263-277.
doi: 10.1016/S0037-0738(02)00082-9 |
[23] | 董李. 罗布泊雅丹地貌沉积物特征及成因分析[D]. 乌鲁木齐: 新疆师范大学, 2013. |
[Dong Li. The sedimentary characteristics and cause analysis of yardang in Lop Nur[D]. Urumqi: Xinjiang Normal University, 2013. ] | |
[24] |
Wang Y, Wu F, Zhang X, et al. Formation and evolution of yardangs activated by Late Pleistocene tectonic movement in Dunhuang, Gansu Province of China[J]. Journal of Earth System Science, 2016, 125(8):1603-1614.
doi: 10.1007/s12040-016-0749-z |
[25] | Visher G S. Grain size distributions and depositional processes[J]. Journal of Sedimentary Research, 1969, 39(3):1074-1106. |
[26] | Ghosh J K, Mazumder B S. Size distribution of suspended particles-unimodality, symmetry and lognormality[J]. Statistical Distributions in Scientific Work, 1981, 6:21-32. |
[27] |
Liu B, Qu J, Ning D, et al. Grain-size study of aeolian sediments found east of Kumtagh Desert[J]. Aeolian Research, 2014, 13:1-6.
doi: 10.1016/j.aeolia.2014.01.001 |
[28] |
Zhang X, Zhou A, Zhang C, et al. High-resolution records of climate change in arid eastern Central Asia during MIS 3 (51600-25300 cal a BP) from Wulungu Lake, north-western China[J]. Journal of Quaternary Science, 2016, 31(6):577-586.
doi: 10.1002/jqs.v31.6 |
[29] | 李开封, 穆桂金, 徐立帅, 等. 塔里木河干流古河道表层沉积物粒度特征及其意义[J]. 水土保持通报, 2012, 32(1):161-164. |
[Li Kaifeng, Mu Guijin, Xu Lishuai, et al. Grain size characteristics and their significance for surface sediment of paleochannels along main stream of Tarim River[J]. Bulletin of Soil and Water Conservation, 2012, 32(1):161-164. ] | |
[30] | 张志高, 张宏亮, 刘青利, 等. 河西走廊不同类型地表沉积物粒度研究[J]. 人民黄河, 2015, 37(7):95-100. |
[Zhang Zhigao, Zhang Hongliang, Liu Qingli, et al. Particle size analysis of surface sediments and its significance in Hexi Corridor of China[J]. Yellow River, 2015, 37(7):95-100. ] | |
[31] | 殷志强, 秦小光, 吴金水, 等. 中国北方部分地区黄土, 沙漠沙, 湖泊, 河流细粒沉积物粒度多组分分布特征研究[J]. 沉积学报, 2009, 27(2):343-351. |
[Yin Zhiqiang, Qin Xiaoguang, Wu Jinshui, et al. The multimodal grain-size distribution characteristics of loess, desert, lake and river sediment in some areas of northern China[J]. Acta Sedimentologica Sinica, 2009, 27(2):343-351. ] | |
[32] |
Vandenberghe J. Grain size of fine-grained windblown sediment: A powerful proxy for process identification[J]. Earth-Science Reviews, 2013, 121:18-30.
doi: 10.1016/j.earscirev.2013.03.001 |
[33] |
Liu X, Sun Y, Vandenberghe J, et al. Palaeoenvironmental implication of grain-size compositions of terrace deposits on the western Chinese Loess Plateau[J]. Aeolian Research, 2018, 32:202-209.
doi: 10.1016/j.aeolia.2018.03.008 |
[34] | 唐进年. 库姆塔格沙漠沉积物特征与沉积环境研究[D]. 北京: 中国林业科学研究院, 2018. |
[Tang Jinnian. Study on sediment characteristics and depositional environment in Kumtagh Desert[D]. Beijing: Chinese Academy of Forestry Sciences, 2018. ] | |
[35] |
Sun D, Su R, Bloemendal J, et al. Grain-size and accumulation rate records from Late Cenozoic aeolian sequences in northern China: Implications for variations in the east Asian winter monsoon and westerly atmospheric circulation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 264(1-2):39-53.
doi: 10.1016/j.palaeo.2008.03.011 |
[36] |
Li Z, Wei Z, Dong S, et al. The paleoenvironmental significance of spatial distributions of grain size in groundwater-recharged lakes: A case study in the hinterland of the Badain Jaran Desert, northwest China[J]. Earth Surface Processes and Landforms, 2018, 43(2):363-372.
doi: 10.1002/esp.v43.2 |
[37] | 贺振杰, 马龙, 吉力力·阿不都外力, 等. 哈萨克斯坦巴尔喀什湖沉积物粒度特征及其对区域环境变化的响应[J]. 干旱区地理, 2021, 44(5):1317-1327. |
[He Zhenjie, Ma Long, Abuduwaili Jilili, et al. Grain-size characteristics of lacustrine sediments in Balkhash Lake, Kazakhstan and its response to regional environmental changes[J]. Arid Land Geography, 2021, 44(5):1317-1327. ] | |
[38] |
Vandenberghe J. Grain size of fine-grained windblown sediment: A powerful proxy for process identification[J]. Earth-Science Reviews, 2013, 121:18-30.
doi: 10.1016/j.earscirev.2013.03.001 |
[1] | SHEN Xinyi, DAI Wen, LIU Aili, TAO Yu, ZHAO Chengyi. An improved flow direction algorithm for sediment transport simulations [J]. Arid Land Geography, 2024, 47(8): 1380-1387. |
[2] | GONG Yifu, PAN Meihui, LI Na, HAO Zewen, CHEN Yougui, LI Chenlu. Grain size characteristics and environmental significance of different types of dune surface sediments in the Dinggye area, southern Xizang [J]. Arid Land Geography, 2024, 47(4): 588-598. |
[3] | WANG Lijie, XIAO Fengjun, DONG Zhibao, MA Huirong, CHEN Hao. Characteristics of grain size and geochemical elements composition of surface sediments of megaripple stripes in the Qaidam Basin [J]. Arid Land Geography, 2023, 46(11): 1826-1835. |
[4] | MA Yunqiang, LIU Rui, LI Zhizhong, JIN Jianhui, ZOU Xiaojun, TAN Dianjia, TAO Tonglian. Holocene environmental evolution recorded by sedimentation on the southern edge of the Gurbantunggut Desert [J]. Arid Land Geography, 2023, 46(10): 1663-1679. |
[5] | LIU Rui,LI Zhizhong,JIN Jianhui,XIE Xihao,ZOU Xiaojun,MA Yunqiang. Internal sedimentary structure of barchan dune in the southwest of Gurbantunggut Desert [J]. Arid Land Geography, 2022, 45(3): 802-813. |
[6] | XIANG Chaosheng,WANG Yong,WANG Junbo,MA Qingfeng,WANG Shihang. Environmental changes recorded by multiproxy of lake sediments in the high-altitude and arid area: A case of Lake Aksayqin [J]. Arid Land Geography, 2022, 45(2): 435-444. |
[7] | WANG Pei,MA Qian,ZHU Yuanpu,ZENG Yi. Grain size characteristics and sedimentary environment of surface sediments from nebkhas and parabolic dunes in the Tukai Desert, Xinjiang [J]. Arid Land Geography, 2021, 44(6): 1644-1653. |
[8] | HE Zhenjie,MA Long,Jilili ABUDUWAILI,LIU Wen,Gulnura ISSANOVA,Galymzhan SAPAROV,HUANG Kun. Grain-size characteristics of lacustrine sediments in Balkhash Lake, Kazakhstan and its response to regional environmental changes [J]. Arid Land Geography, 2021, 44(5): 1317-1327. |
[9] | HUANG Chenlu,YANG Qinke. Runoff and sediment variation rules and differences in Wei River and Jing River Basins [J]. Arid Land Geography, 2021, 44(2): 327-336. |
[10] | LIU Xiya,WANG Haibing,ZUO Hejun,XIAO Jianhua. Fractal spatial variability and its genesis of sediments in Suhongtu Gobi [J]. Arid Land Geography, 2021, 44(1): 168-177. |
[11] | ZHU Yan-qin, ZHAO Zhi-bin, QI Guang-ping, KANG Yan-xia, ZHAO-xia. Characteristics of slope runoff and sediment of different vegetation restoration patterns under individual rainfall events in hilly and gully loess region in middle Gansu Province [J]. Arid Land Geography, 2020, 43(4): 920-927. |
[12] | CHEN Dong-xue, WANG Wei, LIU Li-na, JIANG Ya-juan, LI Yan-yan, NIU Zhi-mei, MA Yu-zhen, HE Jiang. Lake central surface sediment-based pollen-vegetation cover transfer functions and its application in Inner Mongolia Plateau and adjacent area [J]. Arid Land Geography, 2019, 42(5): 1011-1022. |
[13] | YAN Yu-hong,HUANG Wei-dong. Sediment distribution and runoff-sediment relationship in the Shule River Basin [J]. 干旱区地理, 2019, 42(1): 47-55. |
[14] | CAO Zhi-hong, AN Cheng-bang, YIN Li-ying, DUAN Fu-tao, HAO Sheng-tun, ZHOU Ai-feng. Climate change derived from Anggeertu Lake in the Tengger Desert since 988 AD [J]. 干旱区地理, 2018, 41(6): 1251-1259. |
[15] | WANG Yuan-jian, DONG Qi-hua, ZHOU Hai-ying. Analysis and numerical simulation of flood routing of upper reaches of the mainstream of Tarim River [J]. 干旱区地理, 2018, 41(6): 1143-1150. |
|