Arid Land Geography ›› 2023, Vol. 46 ›› Issue (11): 1915-1926.doi: 10.12118/j.issn.1000-6060.2023.075
• Regional Development • Previous Articles Next Articles
LEI Zhenxian(),WANG Kun(),ZHAO Songxin
Received:
2023-02-22
Revised:
2023-04-11
Online:
2023-11-25
Published:
2023-12-05
LEI Zhenxian, WANG Kun, ZHAO Songxin. Spatial effects of transport infrastructure on inbound tourism in countries along the Belt and Road: Based on multiple distance weights[J].Arid Land Geography, 2023, 46(11): 1915-1926.
Tab. 1
Regions and countries along the Belt and Road"
地区 | 国家 | 数量 |
---|---|---|
中俄蒙经济走廊 | 中国、俄罗斯、蒙古 | 3 |
东南亚 | 新加坡、马来西亚、印尼、缅甸、泰国、老挝、柬埔寨、越南、文莱、菲律宾、东帝汶 | 11 |
南亚 | 印度、巴基斯坦、孟加拉国、阿富汗、斯里兰卡、马尔代夫、尼泊尔、不丹 | 8 |
中亚 | 哈萨克斯坦、乌兹别克斯坦、土库曼斯坦、塔吉克斯坦、吉尔吉斯坦 | 5 |
西亚和北非 | 伊朗、伊拉克、土耳其、叙利亚、约旦、黎巴嫩、以色列、巴勒斯坦、沙特阿拉伯、也门、阿曼、阿联酋、卡塔尔、科威特、巴林、埃及 | 16 |
中欧和东欧 | 波兰、立陶宛、爱沙尼亚、拉脱维亚、捷克、斯洛伐克、匈牙利、斯洛文尼亚、克罗地亚、波黑、黑山、塞尔维亚、阿尔巴尼亚、罗马尼亚、保加利亚、马其顿 | 16 |
独立国家联合体 | 乌克兰、白俄罗斯、格鲁吉亚、阿塞拜疆、亚美尼亚、摩尔多瓦 | 6 |
Tab. 2
Variable selection and data sources"
变量类型 | 变量 | 衡量指标 | 数据来源 |
---|---|---|---|
被解释变量 | 入境旅游(Tour) | 入境旅游人数/国家人口数 | 世界银行数据库(2000—2020年)、世界旅游组织(2021年) |
解释变量 | 铁路网密度(Rail) | 铁路长度/国土面积 | 世界银行数据库(2000—2021年) |
公路网密度(Road) | 公路长度/国土面积 | 国际公路协会(2000—2021年) | |
航空运输能力(Air) | 航空客运量/国土面积 | 世界银行数据库(2000—2021年) | |
控制变量 | 旅游资源水平(Res) | 世界级旅游资源总数/国土面积 | 联合国教科文组织(2000—2021年) |
经济发展水平(Pgdp) | 各国人均GDP | 世界银行数据库(2000—2021年) | |
对外开放水平(Open) | 经济自由度指数 | 美国传统基金会经济自由度指数(2000—2021年) | |
旅游服务水平(Ser) | 服务业就业人数/总就业人数 | 世界银行数据库(2000—2021年) | |
市场规模(Den) | 各国人口密度 | 世界银行数据库(2000—2021年) |
Tab. 3
Indicators and calculation methods of the spatial weighting matrix"
权重矩阵类型 | 衡量指标 | 计算公式 | 公式参数含义 | 数据来源 |
---|---|---|---|---|
地理距离( | 国家i、j之间的欧式距离 | dij为地区i、j之间的欧式距离。 | 空间统计分析软件(Open Geoda)中自动生成 | |
经济距离( | 国家i、j在时间跨度内实际GDP平均值差值绝对值的倒数 | 世界银行数据库 | ||
文化距离( | 权力距离(C1) | 霍夫斯塔德文化指数 | ||
个人/集体主义(C2) | ||||
男性/女性特质(C3) | ||||
不规避因(C4) | ||||
长期/短期取向(C5) | ||||
放纵/克制(C6) | ||||
制度距离( | 政治稳定性(I1) | 世界银行全球治理指数 | ||
政府效率(I2) | ||||
监管质量(I3) | ||||
法治规则(I4) | ||||
话语权与问责制(I5) | ||||
腐败控制(I6) |
Tab. 4
Moran’s I and its significance for inbound tourism"
年份 | ||||
---|---|---|---|---|
2000 | 0.0191* | 0.2098*** | -0.0463 | 0.1047*** |
2001 | 0.0264* | 0.1889*** | -0.0437 | 0.0969*** |
2002 | 0.0196* | 0.1900*** | -0.0431 | 0.0914*** |
2003 | 0.0255* | 0.1942*** | -0.0461 | 0.0953*** |
2004 | 0.0254* | 0.2000*** | -0.0459 | 0.1045*** |
2005 | 0.0303** | 0.2063*** | -0.0498* | 0.1136*** |
2006 | 0.0330** | 0.2083*** | -0.0517* | 0.1195*** |
2007 | 0.0362** | 0.2034*** | -0.0532** | 0.1191*** |
2008 | 0.0396** | 0.2057*** | -0.0528** | 0.1249*** |
2009 | 0.0450*** | 0.2166*** | -0.0535** | 0.1285*** |
2010 | 0.0350** | 0.1937*** | -0.0531** | 0.1151*** |
2011 | 0.0652*** | 0.2365*** | -0.0595** | 0.1625*** |
2012 | 0.0713*** | 0.2491*** | -0.0611** | 0.1784*** |
2013 | 0.0696*** | 0.2410*** | -0.0637*** | 0.1763*** |
2014 | 0.0677*** | 0.2410*** | -0.0651*** | 0.1698*** |
2015 | 0.0783*** | 0.2462*** | -0.0669*** | 0.1785*** |
2016 | 0.0865*** | 0.2527*** | -0.0677*** | 0.1835*** |
2017 | 0.0892*** | 0.2485*** | -0.0695*** | 0.1901*** |
2018 | 0.0960*** | 0.2510*** | -0.0706*** | 0.2024*** |
2019 | 0.0988*** | 0.2548** | -0.0574** | 0.2127** |
2020 | 0.7360** | 0.1846*** | -0.0433** | 0.1511*** |
2021 | 0.6570** | 0.1720** | -0.0359* | 0.1228*** |
Tab. 5
Estimation results of OLS and SPDM"
变量 | OLS | SPDM | |||
---|---|---|---|---|---|
Rail | 1.180***(5.091) | 0.063*(1.907) | 0.213*(1.930) | 1.250***(3.431) | 0.286**(1.750) |
Road | 0.012(0.107) | 0.007**(2.372) | 0.011***(3.701) | 0.003(0.836) | 0.006***(2.580) |
Air | 0.018(1.301) | 0.012***(2.669) | 0.003(0.505) | 0.005(1.208) | -0.001(-0.337) |
Pgdp | 0.002***(4.238) | 0.001***(4.365) | 0.002***(2.825) | 0.001**(1.814) | 0.001*(1.953) |
Ser | 2.033***(4.130) | 0.225(1.102) | 0.750***(2.830) | -0.046(-0.172) | 0.063(0.574) |
Den | -0.046***(-4.969) | -0.105(-0.308) | -0.050***(-2.953) | -0.078***(-3.201) | -0.035***(-2.870) |
Open | 1.215***(3.574) | -0.041**(-2.293) | 1.127***(4.350) | 0.210(0.661) | -0.501***(-3.100) |
Res | 12.031***(9.608) | 5.605***(-4.765) | 4.392***(3.162) | 3.520***(3.705) | 2.361***(3.105) |
W×Tour | - | 0.381***(5.470) | 0.311***(7.249) | -0.533***(-6.100) | 0.233***(3.182) |
W×Rail | - | 0.439(0.401) | 0.041(0.055) | 2.330(0.901) | 3.692***(4.501) |
W×Road | - | 0.028*(1.698) | -0.010(-1.387) | -0.031(-0.633) | 0.175***(3.205) |
W×Air | - | -0.033*(-1.707) | 0.070***(2.682) | 0.062*(1.375) | 0.058***(2.865) |
W×Pgdp | - | 0.001(0.371) | -0.001(-1.023) | -0.005(-0.510) | 0.003(0.776) |
W×Ser | - | 3.267**(2.469) | -2.343***(-5.975) | 2.065(0.702) | -1.919**(-2.284) |
W×Den | - | 0.825(0.489) | -0.122**(-1.794) | 0.190(0.329) | -1.901***(-3.086) |
W×Open | - | -2.610**(-2.169) | -2.081***(-4.395) | -3.512**(-1.320) | -1.085(-1.237) |
W×Res | - | 6.374(1.439) | 3.081(1.071) | -4.155(-0.351) | 7.057***(4.031) |
R² | 0.356 | 0.953 | 0.986 | 0.985 | 0.977 |
Log-L | 1222.700 | 4768.055 | 4831.700 | 3579.433 | 5814.710 |
LM-spatial lag | P=0.001 | P=0.000 | P=0.001 | P=0.000 | |
Robust LM-spatial lag | P=0.000 | P=0.000 | P=0.001 | P=0.000 | |
LM-spatial error | P=0.000 | P=0.000 | P=0.004 | P=0.003 | |
Robust LM-spatial error | P=0.002 | P=0.000 | P=0.002 | P=0.000 | |
Hausman test | P=0.000 | P=0.000 | P=0.000 | P=0.000 |
Tab. 6
Decomposition of the spatial effects of transport infrastructure on the impact of inbound tourism"
空间效应分解 | ||||
---|---|---|---|---|
铁路直接效应 | 0.112* (1.806) | 0.275* (1.701) | 1.023*** (4.571) | 0.452*** (3.843) |
铁路间接效应 | 0.751 (0.300) | 0.182 (0.107) | 1.132 (0.576) | 1.507*** (3.140) |
铁路总效应 | 0.863 (0.589) | 0.457 (0.372) | 2.155 (1.399) | 1.959** (4.760) |
公路直接效应 | 0.005** (2.300) | 0.011*** (3.512) | 0.008 (1.164) | 0.015*** (4.573) |
公路间接效应 | 0.040** (1.821) | -0.020 (-0.901) | -0.048 (-1.002) | 0.101*** (3.219) |
公路总效应 | 0.045*** (1.923) | -0.009 (-0.120) | -0.040 (-0.732) | 0.116** (2.410) |
航空直接效应 | 0.012** (2.585) | 0.008 (1.074) | 0.006 (1.030) | 0.002 (0.209) |
航空间接效应 | -0.045* (-1.743) | 0.095*** (2.890) | 0.061 (1.391) | 0.126*** (3.216) |
航空总效应 | -0.033** (-2.350) | 0.103*** (2.730) | 0.067* (1.803) | 0.128*** (4.478) |
[1] |
Wang J J, Selina Y A U. Case studies on transport infrastructure projects in Belt and Road Initiative: An actor network theory perspective[J]. Journal of Transport Geography, 2018, 71: 213-223.
doi: 10.1016/j.jtrangeo.2018.01.007 |
[2] | Teo H C, Lechner A M, Walton G W, et al. Environmental impacts of infrastructure development under the Belt and Road Initiative[J]. Environments, 2019, 6(6): 72, doi: 10.3390/environments6060072. |
[3] | 赫玉玮, 张辉. “一带一路”沿线城市国际旅游合作的现实基础与路径选择[J]. 青海社会科学, 2019(2): 58-65. |
[ He Yuwei, Zhang Hui. The realistic basis and path selection of international tourism cooperation in cities along the Belt and Road[J]. Qinghai Social Sciences, 2019(2): 58-65. ] | |
[4] |
汪德根, 陈田, 陆林, 等. 区域旅游流空间结构的高铁效应及机理——以中国京沪高铁为例[J]. 地理学报, 2015, 70(2): 214-233.
doi: 10.11821/dlxb201502004 |
[ Wang Degen, Chen Tian, Lu Lin, et al. Mechanism and HSR effect of spatial structure of regional tourist flow: Case study of Beijing-Shanghai HSR in China[J]. Acta Geographica Sinica, 2015, 70(2): 214-233. ]
doi: 10.11821/dlxb201502004 |
|
[5] |
李一曼, 修春亮, 孔翔. 浙江陆路交通对区域旅游空间结构及发展的影响研究[J]. 地理科学, 2018, 38(12): 2066-2073.
doi: 10.13249/j.cnki.sgs.2018.12.015 |
[ Li Yiman, Xiu Chunliang, Kong Xiang. Influence of land transportation network evolution on spatial structure and development of regional tourism in Zhejiang Province[J]. Scientia Geographica Sinica, 2018, 38(12): 2066-2073. ]
doi: 10.13249/j.cnki.sgs.2018.12.015 |
|
[6] | 徐一帆, 张宏磊, 田原, 等. 交通系统对旅游空间结构影响研究进展与展望[J]. 旅游科学, 2020, 34(3): 32-46. |
[ Xu Yifan, Zhang Honglei, Tian Yuan, et al. The impact of transportation system on the spatial structure of tourism: Review and prospect[J]. Tourism Science, 2020, 34(3): 32-46. ] | |
[7] | Crouch G I. Demand elasticities for short-haul versus long-haul tourism[J]. Journal of Travel Research, 1994, 33(2): 2-7. |
[8] |
Cascetta E, Papola A, Pagliara F, et al. Analysis of mobility impacts of the high speed Rome-Naples rail link using withinday dynamic mode service choice models[J]. Journal of Transport Geography, 2011, 19(4): 635-643.
doi: 10.1016/j.jtrangeo.2010.07.001 |
[9] | 殷平, 杨寒胭, 张同颢. 高速铁路网与京津冀旅游: 空间作用与结构演化[J]. 旅游学刊, 2019, 34(3): 102-112. |
[ Yin Ping, Yang Hanyan, Zhang Tonghao. High-speed railway and tourism development in Beijing-Tianjin-Hebei region: Spatial interaction and restructuring[J]. Tourism Tribune, 2019, 34(3): 102-112. ] | |
[10] |
汪德根, 牛玉, 王莉. 高铁对旅游者目的地选择的影响——以京沪高铁为例[J]. 地理研究, 2015, 34(9): 1770-1780.
doi: 10.11821/dlyj201509014 |
[ Wang Degen, Niu Yu, Wang Li. Influence of high-speed rail on choices of tourist destination based on the gravity model: A case study of Beijing-Shanghai high-speed rail in China[J]. Geographical Research, 2015, 34(9): 1770-1780. ]
doi: 10.11821/dlyj201509014 |
|
[11] |
Thrane C. Examining tourists’ long-distance transportation mode choices using a multinomial logit regression model[J]. Tourism Management Perspectives, 2015, 15: 115-121.
doi: 10.1016/j.tmp.2014.10.004 |
[12] | 李保超, 王朝辉, 李龙, 等. 高速铁路对区域内部旅游可达性影响——以皖南国际文化旅游示范区为例[J]. 经济地理, 2016, 36(9): 182-191. |
[ Li Baochao, Wang Chaohui, Li Long, et al. The influence of high-speed railways on accessibility of tourism in the region: A case study of southern Anhui international cultural tourism destination[J]. Economic Geography, 2016, 36(9): 182-191. ] | |
[13] | 汪德根, 牛玉, 陈田, 等. 高铁驱动下大尺度区域都市圈旅游空间结构优化——以京沪高铁为例[J]. 资源科学, 2015, 37(3): 581-592. |
[ Wang Degen, Niu Yu, Chen Tian, et al. Optimizing tourist spatial structure for large scale regional metropolitan circles under the Beijing-Shanghai high-speed rail[J]. Resources Science, 2015, 37(3): 581-592. ] | |
[14] |
Wang C, Lim M K, Zhang X, et al. Railway and road infrastructure in the Belt and Road Initiative countries: Estimating the impact of transport infrastructure on economic growth[J]. Transportation Research Part A: Policy and Practice, 2020, 134: 288-307.
doi: 10.1016/j.tra.2020.02.009 |
[15] | 马卫, 曹小曙, 黄晓燕, 等. 丝绸之路沿线交通基础设施空间经济溢出效应测度[J]. 经济地理, 2018, 38(3): 21-29. |
[ Ma Wei, Cao Xiaoshu, Huang Xiaoyan, et al. Measuring spatial economic spillover effects of transport infrastructure along the Silk Road Economic Belt[J]. Economic Geography, 2018, 38(3): 21-29. ] | |
[16] |
Deng T, Hu Y, Yang Y. How geographic, cultural, and institutional distances shape location choices of China’s OFDI in tourism? An empirical study on B&R countries[J]. Asia Pacific Journal of Tourism Research, 2019, 24(8): 735-749.
doi: 10.1080/10941665.2019.1630451 |
[17] | 张艳艳, 于津平, 李德兴. 交通基础设施与经济增长: 基于“一带一路”沿线国家铁路交通基础设施的研究[J]. 世界经济研究, 2018(3): 56-68. |
[ Zhang Yanyan, Yu Jinping, Li Dexing. Transport infrastructure and economic growth: Based on “the Belt and Road” nation’s railway transportation infrastructure[J]. World Economy Studies, 2018(3): 56-68. ] | |
[18] | 侯志强, 曹咪, 吴贵华. “一带一路”倡议的入境旅游政策效应——福建省经验数据的实证[J]. 华侨大学学报(哲学社会科学版), 2021(4): 62-76. |
[ Hou Zhiqiang, Cao Mi, Wu Guihua. The policy effect of inbound tourism of “The Belt and Road” Initiative: Case study of empirical data of Fujian Province[J]. Journal of Huaqiao University (Philosophy & Social Sciences Edition), 2021(4): 62-76. ] | |
[19] |
Rosselló-Nadal J, He J. Tourist arrivals versus tourist expenditures in modelling tourism demand[J]. Tourism Economics, 2020, 26(8): 1311-1326.
doi: 10.1177/1354816619867810 |
[20] | Brida J G, Gόmez D M, Segarra V. On the empirical relationship between tourism and economic growth[J]. Tourism Management, 2020, 81: 104-131. |
[21] | 谢五届, 何建民. 欧盟旅游资源空间格局及其动态演进: 1992—2016[J]. 经济地理, 2019, 39(10): 193-203. |
[ Xie Wujie, He Jianmin. Spatial pattern and dynamic distribution of tourism resources in European Union,1992—2016[J]. Economic Geography, 2019, 39(10): 193-203. ] | |
[22] |
阮文奇, 郑向敏, 李勇泉, 等. 中国入境旅游的“胡焕庸线”空间分布特征及驱动机理研究[J]. 经济地理, 2018, 38(3): 181-189.
doi: 10.2307/142277 |
[ Ruan Wenqi, Zheng Xiangmin, Li Yongquan, et al. Spatial distribution characteristics and driving mechanism of “Hu Line” in inbound tourism in China[J]. Economic Geography, 2018, 38(3): 181-189. ]
doi: 10.2307/142277 |
|
[23] | 许培源, 刘雅芳. “一带一路”沿线国家恐怖活动对旅游业发展的影响[J]. 经济地理, 2020, 40(3): 216-224. |
[ Xu Peiyuan, Liu Yafang. The impact of terrorist activities on tourism development in countries along the Belt and Road[J]. Economic Geography, 2020, 40(3): 216-224. ] | |
[24] |
杨兴柱, 顾朝林, 王群. 旅游流驱动力系统分析[J]. 地理研究, 2011, 30(1): 23-36.
doi: 10.11821/yj2011010003 |
[ Yang Xingzhu, Gu Chaolin, Wang Qun. Study on the driving force of tourist flows[J]. Geographical Research, 2011, 30(1): 23-36. ]
doi: 10.11821/yj2011010003 |
|
[25] | LeSage J, Pace R. Introduction to spatial econometrics[M]. Boca Raton: CRC Press, 2009: 15-26. |
[26] | 王坤, 黄震方, 余凤龙, 等. 中国城镇化对旅游经济影响的空间效应——基于空间面板计量模型的研究[J]. 旅游学刊, 2016, 31(5): 15-25. |
[ Wang Kun, Huang Zhenfang, Yu Fenglong, et al. Spatial effects of China’s urbanization on tourism economic development: Empirical research based on the spatial panel econometric model[J]. Tourism Tribune, 2016, 31(5): 15-25. ] | |
[27] |
Kogut B, Singh H. The effect of national culture on the choice of entry mode[J]. Journal of International Business Studies, 1988, 19(3): 411-432.
doi: 10.1057/palgrave.jibs.8490394 |
[28] | 周玲强, 毕娟. 文化距离对国际旅游目的地选择行为的影响: 以中国入境游市场为例[J]. 浙江大学学报(人文社会科学版), 2017, 47(4): 130-142. |
[ Zhou Lingqiang, Bi Juan. The influence of cultural distance on international tourism destination choices: A case study of China’s inbound tourism market[J]. Journal of Zhejiang University (Humanities and Social Sciences Edition), 2017, 47(4): 130-142. ] | |
[29] |
张子昂, 保继刚. 多重距离对中国入境与出境旅游流的影响:基于组态的视角[J]. 地理科学, 2021, 41(1): 13-21.
doi: 10.13249/j.cnki.sgs.2021.01.002 |
[ Zhang Ziang, Bao Jigang. Effects of multiple distances on inbound and outbound tourism flows in China: A configuration-based perspective[J]. Scientia Geographica Sinica, 2021, 41(1): 13-21. ]
doi: 10.13249/j.cnki.sgs.2021.01.002 |
|
[30] |
Batsaikhan U, Dabrowski M. Central Asia: Twenty-five years after the breakup of the USSR[J]. Russian Journal of Economics, 2017, 3(3): 296-320.
doi: 10.1016/j.ruje.2017.09.005 |
[31] | Suntikul W. Tourism and war: Global perspectives[C]// Wantanee Suntikul. Handbook of Globalisation and Tourism. Cheltenham: Edward Elgar Publishing Ltd., 2019. |
|