Arid Land Geography ›› 2023, Vol. 46 ›› Issue (4): 550-562.doi: 10.12118/j.issn.1000-6060.2022.306
• Surface Process and Ecological Environment • Previous Articles Next Articles
XU Yujie1,2(),LIU Bing1(),SUN Aijun1,2,3,WANG Keqi1,2,LI Dongxue1,2,ZHAO Hui1
Received:
2022-06-22
Revised:
2022-07-19
Online:
2023-04-25
Published:
2023-04-28
XU Yujie, LIU Bing, SUN Aijun, WANG Keqi, LI Dongxue, ZHAO Hui. Research progress of Holocene environmental evolution in the Gurbantunggut Desert and its surrounding areas[J].Arid Land Geography, 2023, 46(4): 550-562.
Tab. 1
Records of humidity evolution since Holocene in northern Xinjiang"
序号 | 类型 | 剖面名称 | 剖面位置 | 时间跨度/ka | 测年手段 | 年代数/个 | 参考文献 |
---|---|---|---|---|---|---|---|
A | 黄土-古土壤序列 | LJW剖面 | 43.975°N,85.336°E | 12.0~0.0 | OSL | 14 | Chen等[ |
B | 黄土-古土壤序列 | ZKT剖面 | 43.537°N,83.314°E | 12.0~0.5 | 14C | 5 | Chen等[ |
C | 黄土-古土壤序列 | TLD16剖面 | 43.335°N,83.018°E | 12.0~0.0 | OSL | 15 | Jia等[ |
D | 黄土-古土壤序列 | KS16剖面 | 43.432°N,83.943°E | 11.5~1.0 | OSL | 14 | Jia等[ |
E | 黄土-古土壤序列 | HC14剖面 | 44.600°N,87.563°E | 10.5~2.0 | 14C | 5 | Jia等[ |
F | 黄土-古土壤序列 | TLD剖面 | 43.401°N,83.037°E | 11.5~1.0 | OSL | 8 | Kang等[ |
G | 黄土-古土壤序列 | XEB剖面 | 43.422°N,82.933°E | 12.0~1.0 | OSL | 8 | Kang等[ |
H | 黄土-古土壤序列 | ZS剖面 | 42.934°N,80.956°E | 11.5~0.5 | OSL | 10 | Kang等[ |
I | 湖泊沉积 | 博斯腾湖钻孔 | 41.978°N,87.244°E | 8.5~0.0 | OSL、14C | 12 | Huang等[ |
J | 湖泊沉积 | 乌伦古湖钻孔 | 47.273°N,87.137°E | 9.5~0.0 | 14C | 6 | 蒋庆丰等[ |
K | 湖泊沉积 | 赛里木湖钻孔 | 44.609°N,81.117°E | 12.0~0.0 | 14C | 12 | Jiang等[ |
L | 湖泊沉积 | 喀纳斯湖钻孔 | 48.730°N,87.020°E | 12.0~0.0 | 14C | 9 | Huang等[ |
M | 湖泊沉积 | 巴里坤湖钻孔 | 43.629°N,92.808°E | 11.0~0.0 | 14C | 12 | An等[ |
N | 湖泊沉积 | 艾比湖钻孔 | 44.906°N,82.904°E | 12.0~0.0 | 14C | 8 | Wang等[ |
O | 泥炭沉积 | 铁力沙汗泥炭 | 48.809°N,86.920°E | 9.0~0.0 | 14C | 5 | Zhang等[ |
P | 泥炭沉积 | 柴窝堡泥炭 | 43.496°N,87.910°E | 8.5~0.0 | 14C | 19 | Hong等[ |
Q | 泥炭沉积 | 克拉沙子泥炭 | 48.117°N,88.370°E | 11.5~3.5 | 14C | 14 | Wang等[ |
R | 泥炭沉积 | 那仁夏泥炭 | 48.800°N,86.900°E | 11.5~0.0 | 14C | 9 | Feng等[ |
S | 泥炭沉积 | 温泉-1泥炭 | 44.972°N,81.030°E | 10.0~0.0 | 14C | 8 | Li等[ |
T | 石笋沉积 | 布鲁克石笋 | 42.433°N,88.733°E | 9.0~0.5 | ICP-MS | 19 | Liu等[ |
Tab. 2
Records of aeolian activity in Gurbantunggut Desert and its surroundings since Holocene"
序号 | 类型 | 剖面名称 | 剖面位置 | 时间跨度/ka | 测年手段 | 年代数/个 | 代用指标 | 参考文献 |
---|---|---|---|---|---|---|---|---|
1 | 风成沙序列 | 梧桐沟钻孔 | 44.467°N,87.864°E | 12.0~0.0 | OSL | 10 | 粒度、磁化率等 | Li等[ |
2 | 风成沙-河湖相序列 | 沙漠钻孔 | 44.497°N,88.183°E | 8.0~5.0 | TL | 5 | 粒度、孢粉等 | 黄强等[ |
3 | 风成沙-古土壤序列 | 莫索湾剖面 | 44.667°N,86.333°E | 11.0~0.5 | 14C、TL | 9 | 粒度、CaCO3等 | 陈惠中等[ |
4 | 风成沙-河湖相序列 | MGDD | 44.325°N,86.238°E | 4.5~4.0 | 14C | 2 | 粒度、有机质等 | 马妮娜[ |
5 | 风成沙-河湖相序列 | 4C2L | 44.619°N,86.624°E | 5.5~5.0 | 14C | 2 | 粒度、有机质等 | 马妮娜[ |
6 | 风成沙-河湖相序列 | 23SGZ | 45.143°N,85.958°E | 1.0~0.0 | 14C | 1 | 粒度、有机质等 | 马妮娜[ |
7 | 风成沙-河湖相序列 | TDG-A | 44.696°N,86.766°E | 6.0~5.0 | 14C | 1 | 粒度、有机质等 | 马妮娜[ |
8 | 湖泊沉积 | 东道海子B剖面 | 44.666°N,87.570°E | 5.0~0.0 | 14C | 8 | 粒度、孢粉等 | 马妮娜等[ |
9 | 湖泊沉积 | 东道海子剖面DDH | 44.604°N,87.590°E | 6.5~0.0 | OSL | 5 | 粒度、磁化率等 | 何冬[ |
10 | 湖泊沉积 | 东道海子钻孔 | 44.643°N,87.575°E | 12.0~0.0 | 14C | 5 | 粒度、孢粉等 | 李志忠等[ |
11 | 湖泊沉积 | BLK-1 | 43.700°N,92.833°E | 9.4~0.0 | 14C | 7 | 粒度 | 薛积彬等[ |
12 | 风成沙-土壤序列 | THE-1~THE-8 | 42°420′~43°120′N,83°150′~84°450′E | 12.0~0.0 | OSL | 79 | 粒度、磁化率等 | Long等[ |
[1] | 陈发虎, 黄小忠, 杨美临, 等. 亚洲中部干旱区全新世气候变化的西风模式——以新疆博斯腾湖记录为例[J]. 第四纪研究, 2006, 26(6): 881-887. |
[Chen Fahu, Huang Xiaozhong, Yang Meilin, et al. Westerly dominated Holocene climate model in arid Central Asia: Case study on Bosten Lake, Xinjiang, China[J]. Quaternary Sciences, 2006, 26(6): 881-887.] | |
[2] |
Chen F H, Chen J H, Huang W, et al. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192: 337-354.
doi: 10.1016/j.earscirev.2019.03.005 |
[3] |
Chen F H, Yu Z C, Yang M L, et al. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3-4): 351-364.
doi: 10.1016/j.quascirev.2007.10.017 |
[4] |
Chen J, Huang W, Jin L Y, et al. A climatological northern boundary index for the East Asian summer monsoon and its interannual variability[J]. Science China Earth Sciences, 2018, 61(1): 13-22.
doi: 10.1007/s11430-017-9122-x |
[5] |
Feng S, Hu Q, Huang W, et al. Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations[J]. Global and Planetary Change, 2014, 112: 41-52.
doi: 10.1016/j.gloplacha.2013.11.002 |
[6] | 陈惠中, 金炯, 董光荣. 全新世古尔班通古特沙漠演化和气候变化[J]. 中国沙漠, 2001, 21(4): 333-339. |
[Chen Huizhong, Jin Jiong, Dong Guangrong. Holocene evolution processes of Gurbantunggut Desert and climatic changes[J]. Journal of Desert Research, 2001, 21(4): 333-339.] | |
[7] |
Li S H, Fan A C. OSL chronology of sand deposits and climate change of last 18 ka in Gurbantunggut Desert, northwest China[J]. Journal of Quaternary Science, 2011, 26(8): 813-818.
doi: 10.1002/jqs.v26.8 |
[8] |
Long H, Shen J, Chen J H, et al. Holocene moisture variations over the arid Central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China[J]. Quaternary Science Reviews, 2017, 174: 13-32.
doi: 10.1016/j.quascirev.2017.08.024 |
[9] | 钟德才. 中国沙海动态演化[M]. 兰州: 甘肃文化出版社, 1998: 181-187. |
[Zhong Decai. Dynamic evolution of sand desert in China[M]. Lanzhou: Gansu Culture Publishing House, 1998: 181-187.] | |
[10] | 钱亦兵, 吴兆宁. 古尔班通古特沙漠环境研究[M]. 北京: 科学出版社, 2010: 2-28. |
[Qian Yibing, Wu Zhaoning. Environmental study of the Gurbantunggut Desert[M]. Beijing: Science Press, 2010: 2-28.] | |
[11] | 季方, 叶玮, 魏文寿. 古尔班通古特沙漠固定与半固定沙丘成因初探[J]. 干旱区地理, 2000, 23(1): 32-36. |
[Ji Fang, Ye Wei, Wei Wenshou. Preliminary study on the formation causes of the fixed and semi-fixed dunes in Gurbantonggut Desert[J]. Arid Land Geography, 2000, 23(1): 32-36.] | |
[12] | 刘瑞, 李志忠, 靳建辉, 等. 古尔班通古特沙漠西南缘新月形沙丘内部沉积构造特征研究[J]. 干旱区地理, 2022, 45(3): 802-813. |
[Liu Rui, Li Zhizhong, Jin Jianhui, et al. Internal sedimentary structure of barchan dune in the southwest of Gurbantunggut Desert[J]. Arid Land Geography, 2022, 45(3): 802-813.] | |
[13] |
Qian Y B, Wu Z N, Zhao R F, et al. Vegetation patterns and species-environment relationships in the Gurbantunggut Desert of China[J]. Journal of Geographical Sciences, 2008, 18(4): 400-414.
doi: 10.1007/s11442-008-0400-2 |
[14] | 刘铮瑶. 古尔班通古特沙漠沙丘地貌及其发育环境[D]. 西安: 陕西师范大学, 2020. |
[Liu Zhengyao. Dune landform and its development environment in Gurbantunggut Desert[D]. Xi’an: Shaanxi Normal University, 2020.] | |
[15] | 温仰磊, 王友郡, 柳加波, 等. 准噶尔盆地南缘黄土磁化率变化规律及影响因素[J]. 地球环境学报, 2014, 5(2): 85-92. |
[Wen Yanglei, Wang Youjun, Liu Jiabo, et al. Variation and influencing factors of loess susceptibility in the southern margin of Junggar Basin[J]. Journal of Earth Environment, 2014, 5(2): 85-92.] | |
[16] |
Chen F H, Jia J, Chen J H, et al. A persistent Holocene wetting trend in arid Central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China[J]. Quaternary Science Reviews, 2016, 146: 134-146.
doi: 10.1016/j.quascirev.2016.06.002 |
[17] |
Jia J, Chen J H, Wang Z Y, et al. No evidence for an anti-phased Holocene moisture regime in mountains and basins in Central Asian: Records from Ili loess, Xinjiang[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 572: 110407, doi: 10.1016/j.palaeo.2021.110407.
doi: 10.1016/j.palaeo.2021.110407 |
[18] |
Kang S G, Wang X L, Roberts H M, et al. Increasing effective moisture during the Holocene in the semiarid regions of the Yili Basin, Central Asia: Evidence from loess sections[J]. Quaternary Science Reviews, 2020, 246: 106553, doi: 10.1016/j.quascirev.2020.106553.
doi: 10.1016/j.quascirev.2020.106553 |
[19] |
Jiang Q F, Ji J F, Shen J, et al. Holocene vegetational and climatic variation in westerly-dominated areas of Central Asia inferred from the Sayram Lake in northern Xinjiang, China[J]. Science China Earth Sciences, 2013, 56(3): 339-353.
doi: 10.1007/s11430-012-4550-9 |
[20] | 孙湘君, 杜乃秋, 翁成郁, 等. 新疆玛纳斯湖盆周围近14000年以来的古植被古环境[J]. 第四纪研究, 1994, 14(3): 239-248. |
[Sun Xiangjun, Du Naiqiu, Weng Chengyu, et al. Paleovegetation and paleoenvironment of Manasi Lake, Xinjiang, NW China during the last 14000 years[J]. Quaternary Sciences, 1994, 14(3): 239-248.] | |
[21] |
Herzschuh U, Tarasov P, Wünnemann B, et al. Holocene vegetation and climate of the Alashan Plateau, NW China, reconstructed from pollen data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 211(1-2): 1-17.
doi: 10.1016/j.palaeo.2004.04.001 |
[22] |
Zhang D L, Feng Z D. Holocene climate variations in the Altai Mountains and the surrounding areas: A synthesis of pollen records[J]. Earth-Science Reviews, 2018, 185: 847-869.
doi: 10.1016/j.earscirev.2018.08.007 |
[23] |
Huang X Z, Peng W, Rudaya N, et al. Holocene vegetation and climate dynamics in the Altai Mountains and surrounding areas[J]. Geophysical Research Letters, 2018, 45(13): 6628-6636.
doi: 10.1029/2018GL078028 |
[24] |
Wang W, Zhang D L. Holocene vegetation evolution and climatic dynamics inferred from an ombrotrophic peat sequence in the southern Altai Mountains within China[J]. Global and Planetary Change, 2019, 179: 10-22.
doi: 10.1016/j.gloplacha.2019.05.003 |
[25] | 蒋庆丰, 沈吉, 刘兴起, 等. 西风区全新世以来湖泊沉积记录的高分辨率古气候演化[J]. 科学通报, 2007, 52(9): 1042-1049. |
[Jiang Qingfeng, Shen Ji, Liu Xingqi, et al. A high resolution climatic change since Holocene inferred from multi proxy of lake sediment in westerly area of China[J]. Chinese Science Bulletin, 2007, 52(9): 1042-1049.] | |
[26] |
Feng Z D, Sun A Z, Abdusalih N, et al. Vegetation changes and associated climatic changes in the southern Altai Mountains within China during the Holocene[J]. The Holocene, 2016, 27(5): 683-693.
doi: 10.1177/0959683616670469 |
[27] |
Li J Y, Wang N L, Dodson J, et al. Holocene negative coupling of summer temperature and moisture availability over southeastern arid Central Asia[J]. Climate Dynamics, 2020, 55(5): 1187-1208.
doi: 10.1007/s00382-020-05319-x |
[28] |
Zhang Y, Meyers P A, Liu X T, et al. Holocene climate changes in the Central Asia mountain region inferred from a peat sequence from the Altai Mountains, Xinjiang, northwestern China[J]. Quaternary Science Reviews, 2016, 152: 19-30.
doi: 10.1016/j.quascirev.2016.09.016 |
[29] | Hong B, Gasse F, Uchida M, et al. Increasing summer rainfall in arid eastern-Central Asia over the past 8500 years[J]. Scientific Reports, 2014, 4(1): 1-10. |
[30] |
Liu X K, Liu J B, Shen C C, et al. Inconsistency between records of δ18O and trace element ratios from stalagmites: Evidence for increasing mid-late Holocene moisture in arid Central Asia[J]. The Holocene, 2019, 30(3): 369-379.
doi: 10.1177/0959683619887431 |
[31] |
Huang X Z, Chen F H, Fan Y X, et al. Dry late-glacial and early Holocene climate in arid Central Asia indicated by lithological and palynological evidence from Bosten Lake, China[J]. Quaternary International, 2009, 194(1-2): 19-27.
doi: 10.1016/j.quaint.2007.10.002 |
[32] |
An C B, Lu Y B, Zhao J J, et al. A high-resolution record of Holocene environmental and climatic changes from Lake Balikun (Xinjiang, China): Implications for Central Asia[J]. The Holocene, 2012, 22(1): 43-52.
doi: 10.1177/0959683611405244 |
[33] |
Wang W, Feng Z D, Ran M, et al. Holocene climate and vegetation changes inferred from pollen records of Lake Aibi, northern Xinjiang, China: A potential contribution to understanding of Holocene climate pattern in East-Central Asia[J]. Quaternary International, 2013, 311: 54-62.
doi: 10.1016/j.quaint.2013.07.034 |
[34] | 黄强, 周兴佳. 晚更新世晚期以来古尔班通古特沙漠南部的气候环境演化[J]. 干旱区地理, 2000, 23(1): 55-60. |
[Huang Qiang, Zhou Xingjia. The climate-environment changes in the south of Gurbantunggut Desert since 80 ka BP[J]. Arid Land Geography, 2000, 23(1): 55-60.] | |
[35] | 马妮娜. 全新世以来古尔班通古特沙漠南缘风沙活动研究[D]. 北京: 中国科学院大学, 2005. |
[Ma Ni’na. Study of aeolian activity in the southern margin of Gurbantunggut Desert since Holocene[D]. Beijing: University of Chinese Academy of Sciences, 2005.] | |
[36] | 马妮娜, 穆桂金, 阎顺. 中全新世以来乌鲁木齐东道海子B剖面沉积物源探讨与分析[J]. 干旱区地理, 2005, 28(2): 188-193. |
[Ma Ni’na, Mu Guijin, Yan Shun. Grain-size analyses and detrital sediment discuss of the B profile of Dongdaohaizi in Urumqi since the middle Holocene[J]. Arid Land Geography, 2005, 28(2): 188-193.] | |
[37] | 何冬. 乌鲁木齐东道海子沉积记录的中全新世以来气候变化研究[D]. 西安: 陕西师范大学, 2016. |
[He Dong. Study of climate change from sediments recorded of Dongdaohaizi in Urumqi since the middle Holocene[D]. Xi’an: Shaanxi Normal University, 2016.] | |
[38] | 李志忠, 海鹰, 罗若愚, 等. 乌鲁木齐河下游地区湖泊沉积物的粒度特征与沉积环境[J]. 干旱区研究, 2000, 17(3): 1-5. |
[Li Zhizhong, Hai Ying, Luo Ruoyu, et al. Grain-size characteristics and sedimentary environment in the lacustrain deposit of downstream area in Wulumuqi River since 30 ka BP[J]. Arid Zone Research, 2000, 17(3): 1-5.] | |
[39] | 李志忠, 海鹰, 周勇, 等. 乌鲁木齐河下游地区30 ka BP以来湖泊沉积的孢粉组合与古植被古气候[J]. 干旱区地理, 2001, 24(3): 201-205. |
[Li Zhizhong, Hai Ying, Zhou Yong, et al. Pollen component of lacustrain deposit and its palaeo-environment significance in the downstream region of Urumqi River since 30 ka BP[J]. Arid Land Geography, 2001, 24(3): 201-205.] | |
[40] | 薛积彬, 钟巍. 干旱区湖泊沉积物粒度组分记录的区域沙尘活动历史: 以新疆巴里坤湖为例[J]. 沉积学报, 2008, 26(4): 647-654. |
[Xue Jibin, Zhong Wei. Variations in dust event reflected by grain-size component of lacustrine records in droughty area: A case study on Barkol Lake, Xinjiang, China[J]. Acta Sedimentologica Sinica, 2008, 26(4): 647-654.] | |
[41] |
Liu X Q, Herzschuh U, Shen J, et al. Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China[J]. Quaternary Research, 2017, 70(3): 412-425.
doi: 10.1016/j.yqres.2008.06.005 |
[42] | Dyke A S. An outline of north American deglaciation with emphasis on central and northern Canada[J]. Developments in Quaternary Sciences, 2004, 2: 373-424. |
[43] |
Praetorius S K, McManus J F, Oppo D W, et al. Episodic reductions in bottom-water currents since the last ice age[J]. Nature Geoscience, 2008, 1(7): 449-452.
doi: 10.1038/ngeo227 |
[44] |
Jin L Y, Chen F H, Morrill C, et al. Causes of early Holocene desertification in arid Central Asia[J]. Climate Dynamics, 2012, 38(7-8): 1577-1591.
doi: 10.1007/s00382-011-1086-1 |
[45] | Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285. |
[46] |
Zhao J J, An C B, Huang Y S, et al. Contrasting early Holocene temperature variations between monsoonal East Asia and westerly dominated Central Asia[J]. Quaternary Science Reviews, 2017, 178: 14-23.
doi: 10.1016/j.quascirev.2017.10.036 |
[1] | YANG Rui, LI Jianyong, WANG Ninglian, CHEN Xiaojun, DU Jianfeng, LIU Jianbo, HAN Yueting. Holocene sediment element geochemical records and their paleoenvironmental significance in Wenquan area of western Tianshan Mountains [J]. Arid Land Geography, 2023, 46(6): 900-910. |
[2] | MA Yunqiang, LIU Rui, LI Zhizhong, JIN Jianhui, ZOU Xiaojun, TAN Dianjia, TAO Tonglian. Holocene environmental evolution recorded by sedimentation on the southern edge of the Gurbantunggut Desert [J]. Arid Land Geography, 2023, 46(10): 1663-1679. |
[3] | ZHANG Feng,XIA Qianqian,Dilibaier Tuersun,LIU Jianzong. Holocene hydrology and environment changes in the Keriya River Delta in 13.8-2.3 ka in Taklimakan Desert: Inferred from the stratigraphy [J]. Arid Land Geography, 2021, 44(1): 178-187. |
[4] | LI Xiao-gang, HUANG Chun-chang, PANG Jiang-li. Palaeoflood events in the lower reaches of the Wudinghe River [J]. Arid Land Geography, 2020, 43(2): 380-387. |
[5] | DUAN Yan-wu, SUN Qing, XIE Man-man, HOU Ju-zhi, LIANG Jie, LI Guo-qiang, CHEN Fa-hu. Holocene temperature changes in arid Central Asia revealed by GDGTs of loesspaleosol sequence in Tianshan Mountains [J]. 干旱区地理, 2018, 41(3): 528-535. |
[6] | WANG Zhao-duo, HUANG Chun-chang, ZHA Xiao-chun, PANG Jiang-li, ZHOU Ya-li, LI Xiao-gang. Palaeoflood sedimentological and hydrological study of the Luzhuang section in the upper reaches of Huaihe River [J]. 干旱区地理, 2018, 41(2): 325-333. |
[7] | TANG Jin-nian, DING Feng, ZHANG Jin-hu, SU Zhi-zhu, SUN Tao. BL section recording process of rapid climate change event of Holocene at southeastern edge of the Kumtagh Desert [J]. , 2017, 40(6): 1171-1178. |
[8] | HU Ying, HUANG Chun-chang, ZHOU Ya-li, PANG Jiang-li, ZHA Xiao-chun, GUO Yong-qiang, SHI Bin-nan. Hydrological studies of the Holocene palaeoflood in the Taohe River Basin of the upper Yellow River [J]. , 2017, 40(5): 1029-1037. |
[9] | XIE Hai-chao, WEI Hai-tao, WANG Qiang, HUANG Xiao-zhong, PENG Wei, CHEN Fa-hu. Relationship between magnetic minerals and there sedimentary environment of Holocene sediments from Bosten Lake,Xinjiang [J]. , 2017, 40(3): 512-522. |
[10] | LIU Wen-jin, HUANG Chun-chang, PANG Jiang-li, ZHA Xiao-chun, SHI Bin-nan. Holocene palaeoflood and climatic changes at the Matouguan Reach of the Yellow River [J]. , 2017, 40(1): 85-93. |
[11] | SHI Bin-nan, HUANG Chun-chang, PANG Jiang-li, ZHA Xiaochun, LIU Tao, LIU Wen-jin. Hydrological reconstructions of the Holocene Palaeoflood in the Tianshui East Reach of the upper Weihe River [J]. , 2016, 39(3): 573-581. |
[12] | LI Xiao-gang,HUANG Chun-chang,PANG Jiang-li. Grain-size characteristics of the early Holocene flood Slackwater deposits in the upper reaches of Danjiang River [J]. , 2014, 37(4): 646-655. |
[13] | ZHAO Yong-tao,AN Cheng-bang,CHEN Yu-feng,ZHAO Jia-ju,ZHOU Ai-feng,SHI Chao. A high-resolution climatic change since the Late Glacial Age inferred from multi-proxy of sediments in Ulungur Lake [J]. , 2014, 37(2): 222-229. |
[14] | RAN Min,YANG QI-li,HUANG Chang-qing. Sedimentary strata record in VA loess section from the southern Kazakhstan during past 25 000 a [J]. , 2013, 36(6): 979-986. |
[15] | HOU Guang-liang,LAI Zhong-ping,SUN Yong-juan,P.Jeffrey BRANTINGHAM. Impact of the Holocene Climatic Optimum on human activities in the northeastern margin of the Qinghai-Tibetan Plateau [J]. , 2013, 36(6): 971-978. |
|