Two-endmember mixed pixel unmixing based on SVR model
WU Xiao-ying1,WANG Cui-yun2
(1 Lanzhou Resources & Environment Voc-Tech College,Lanzou 730021,Gansu,China;2 Lanzhou City University School of Urban Economics and Tourism Culture,Lanzou 730070,Gansu,China)
[1] BROWN M,LEWIS H G,GUNN S R. Linear spectral mixture models and support vector machines for remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing,2002,38(5):2346-2360.[2] BROWN M,GUNN S R,LEWIS H G. Support vector machines for optimal classification and spectral unmixing[J]. Ecological Modelling,1999,120(2-3):167-179.[3] ICHOKU C,KARNIELI A. A review of mixture modeling techniques for sub-pixel land cover estimation[J]. Remote Sensing Reviews,1996,13(3):161-186.[4] ZHANG J,FOODY G M. Fully-fuzzy supervised classification of sub-urban land cover from remotely sensed imagery:statistical and artificial neural network approaches[J]. International Journal of Remote Sensing,2001,22(4):615-628.[5] FOODY G M,MATHUR A. The use of small training sets containing mixed pixels for accurate hard image classification:Trai- ning on mixed spectral responses for classification by a SVM[J]. Remote Sensing of Environment,2006,103(2):179-189.[6] ZHU H. Linear spectral unmixing assisted by probability guided and minimum residual exhaustive search for subpixelclassification[J]. International Journal of Remote Sensing,2005,26(24):5585-5601.[7] ATKINSON P M. Super-resolution target mapping from soft cla- ssified remotely sensed imagery[J]. Photogrammetric Engineering and Remote Sensing,2005,71(7):839-846.[8] SHANMUGAM P,AHN Y H,SANJEEVI S. A comparison of the classification of wetland characteristics by linear spectral mi- xture modelling and traditional hard classifiers on multispectral remotely sensed imagery in southern India[J]. Ecological Modelling,2006,194(4):379-394.[9] DURBHA S S,KING R L,YOUNAN N H. Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer[J]. Remote sensing of environment,2007,107(1-2):348-361.sdfsdgsgfdfhh[12] XIAO J,MOODY A. A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico,USA[J]. Remote Sensing of Environment,2005,98(2-3):237-250.[13] 唐晓燕,高昆,倪国强. 高光谱图像非线性解混方法的研究进展[J]. 遥感技术与应用,28(4):731-738.[14] WANG L,JIA X. Integration of soft and hard classifications using extended support vector machines[J]. IEEE Geoscience and Remote Sensing Letters,2009,6(3):543-547.[15] 张锦水,何春阳,潘耀忠,等. 基于 SVM的多源信息复合的高空间分辨率遥感数据分类研究[J]. 遥感学报,2006,10(1):49-57.[16] 吴波,张良培,李平湘. 基于支撑向量回归的高光谱混合像元非线性分解[J]. 遥感学报,2006,10(5):312-318.[17] SMOLA A J,SCHLKOPF B. A tutorial on support vector regression[J]. Statistics and computing,2004,14(3):199-222.[18] 王圆圆,陈云浩,李京. 模型树和支持向量回归在高光谱遥感中的应用[J]. 中国矿业大学学报,2006,35(6):818-823.[19] ROBERT D A,GARDNER M,CHURCH R,et al. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models[J]. Remote Sensing of Environment,1998,65:267-279.[20] 潘明忠,亓洪兴,肖功海,等. 基于高精度端元的混合像元线性分解模型研究[J]. 红外与毫米波学报,2010,29(5):357-361.[21] CARPENTER G A,GOPAL S,MACOMBER S,et al. A neural network method for efficient vegetation mapping[J]. Remote Sensing of Environment,1999,70(3):326-338.[22] DEFRIES R S,TOWNSHEND J,HANSEN M C. Continuous fields of vegetation characteristics at the global scale at 1-km resolution[J]. Journal of Geophysical Research,1999,104(14):16911-16916.[23] 屈创,马金辉,夏燕秋,等. 基于MODIS数据的石羊河流域地表温度空间分布[J]. 干旱区地理,2014,37(1):125-133.[24] 段含明,艾里西尔·库尔班,玉米提·哈力克. 基于多时相CBERS/CCD数据的塔里木河下游植被变化[J]. 干旱区地理,2010,33(2):263-271.[25] 高闻宇,李忠勤,李开明,等. 基于遥感与GIS的库克苏河流域冰川变化研究[J]. 干旱区地理,2011,34(2):252-261.[26] 孙永猛,丁建丽,瞿娟. 基于NDSI-Albedo特征空间的MODIS积雪丰度信息反演方法研究[J]. 干旱区地理,2013,36(3):520-527.