Arid Land Geography ›› 2025, Vol. 48 ›› Issue (5): 801-811.doi: 10.12118/j.issn.1000-6060.2024.377
• Biology and Pedology • Previous Articles Next Articles
XUE Liang1,2(), MA Zhongming1,2(
), ZHAO Anyu3, LUO Shuanglong1,2, XUE Lian4, Muhammad Ali RAZA1
Received:
2024-06-17
Revised:
2024-08-21
Online:
2025-05-25
Published:
2025-05-13
Contact:
MA Zhongming
E-mail:xuel_3521@163.com;mazhming@163.com
XUE Liang, MA Zhongming, ZHAO Anyu, LUO Shuanglong, XUE Lian, Muhammad Ali RAZA. Effects of water-nitrogen coupling on NH3 and N2O emissions from drip-irrigated watermelon in the Hexi irrigation area[J].Arid Land Geography, 2025, 48(5): 801-811.
Tab. 1
Basic physical and chemical properties of soil in experimental field"
土层/cm | pH | 容重/g·cm-3 | 有机质/g·kg-1 | 全氮/g·kg-1 | 硝态氮/mg·kg-1 | 速效磷/mg·kg-1 | 速效钾/mg·kg-1 |
---|---|---|---|---|---|---|---|
0~20 | 8.41 | 1.44 | 4.32 | 0.74 | 9.09 | 38.25 | 114.77 |
20~40 | 8.18 | 1.49 | 6.58 | 0.60 | 7.73 | 29.08 | 123.91 |
40~60 | 8.29 | 1.48 | 5.36 | 0.54 | 8.26 | 35.94 | 104.38 |
60~80 | 8.11 | 1.51 | 5.88 | 0.55 | 10.89 | 32.70 | 116.50 |
80~100 | 8.25 | 1.45 | 5.95 | 0.49 | 9.86 | 34.28 | 127.85 |
Tab. 2
Design of experimental treatments"
灌水下限 | 施氮量/kg∙hm-2 | 灌溉次数/次 | 总灌水量/m3∙hm-2 | 单次平均灌水量/m3∙hm-2 |
---|---|---|---|---|
田间持水量的50%(I50) | 0(N0) | 8 | 1081 | 135.15 |
100(N100) | 8 | 1081 | 135.15 | |
200(N200) | 8 | 1081 | 135.15 | |
300(N300) | 8 | 1081 | 135.15 | |
田间持水量的65%(I65) | 0(N0) | 12 | 1345 | 112.80 |
100(N100) | 12 | 1345 | 112.80 | |
200(N200) | 12 | 1345 | 112.80 | |
300(N300) | 2 | 1345 | 112.80 | |
田间持水量的80%(I80) | 0(N0) | 20 | 1746 | 87.30 |
100(N100) | 20 | 1746 | 87.30 | |
200(N200) | 20 | 1746 | 87.30 | |
300(N300) | 20 | 1746 | 87.30 |
Tab. 3
Cumulative emissions and loss rates of NH3 during watermelon growing period under different treatments"
处理 | 苗期 | 伸蔓期 | 结果期 | 膨大期 | 全生育期 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
累积排放量/kg∙hm-2 | 损失率/% | 累积排放量/kg∙hm-2 | 损失率/% | 累积排放量/kg∙hm-2 | 损失率/% | 累积排放量/kg∙hm-2 | 损失率/% | 累积排放量/kg∙hm-2 | 损失率/% | ||||||
I50 | N0 | 1.26±0.05c | - | 0.73±0.07c | - | 1.03±0.07bc | - | 0.03±0.01c | - | 3.05±0.09d | - | ||||
N100 | 1.96±0.09b | 1.39±0.15b | 1.00±0.12b | 0.54±0.10b | 1.52±0.09b | 0.66±0.05ab | 0.14±0.03b | 0.11±0.03a | 4.62±0.24c | 1.56±0.16c | |||||
N200 | 3.08±0.10a | 1.82±0.05a | 1.29±0.10b | 0.56±0.03b | 1.77±0.13b | 0.49±0.09b | 0.17±0.03ab | 0.07±0.01ab | 6.31±0.16b | 1.63±0.06ab | |||||
N300 | 3.77±0.28a | 1.67±0.22ab | 1.95±0.10a | 0.81±0.11a | 2.66±0.24a | 0.72±0.12a | 0.21±0.06a | 0.06±0.02b | 8.59±0.47a | 1.85±0.16a | |||||
I65 | N0 | 1.16±0.10d | - | 1.00±0.12c | - | 0.96±0.10c | - | 0.04±0.01c | - | 3.15±0.14d | - | ||||
N100 | 2.69±0.12c | 3.07±0.04a | 1.36c±0.08 | 0.72±0.19c | 1.97±0.20b | 1.34±0.15a | 0.17±0.02b | 0.13±0.01a | 6.18±0.26c | 3.03±0.20a | |||||
N200 | 3.51±0.17b | 2.35±0.13c | 2.11±0.06b | 1.11±0.17b | 2.40±0.14b | 0.96±0.12b | 0.34±0.08ab | 0.15±0.04a | 8.36±0.25b | 2.60±0.07b | |||||
N300 | 5.11±0.23a | 2.64±0.12b | 3.99±0.18a | 1.99±0.18a | 3.43±0.19a | 1.10±0.04b | 0.44±0.06a | 0.13±0.01a | 12.96±0.58a | 3.27±0.15a | |||||
I80 | N0 | 1.71±0.12d | - | 1.26±0.07c | - | 0.92±0.08c | - | 0.10±0.04c | - | 3.99±0.16d | - | ||||
N100 | 2.94±0.15c | 2.46±0.33c | 1.89±0.09c | 1.25±0.31b | 1.44±0.13b | 0.69±0.15b | 0.28±0.04b | 0.18±0.07a | 6.54±0.38c | 2.55±0.37b | |||||
N200 | 4.95±0.37b | 3.25±0.33a | 3.51±0.17b | 2.24±0.22a | 1.70±0.14b | 0.52±0.09b | 0.42±0.05ab | 0.16±0.04a | 10.59±0.65b | 3.30±0.31a | |||||
N300 | 6.10±0.31a | 2.93±0.13ab | 5.01±0.19a | 2.50±0.17a | 3.72±0.19a | 1.24±0.07a | 0.56±0.09a | 0.15±0.02a | 15.39±0.68a | 3.80±0.18a |
Tab. 4
Cumulative N2O emissions during watermelon growing period under different treatments"
处理 | 苗期/kg·hm-2 | 伸蔓期/kg·hm-2 | 结果期/kg·hm-2 | 膨大期/kg·hm-2 | 全生育期/kg·hm-2 | |
---|---|---|---|---|---|---|
I50 | N0 | 0.18±0.03c | 0.11±0.02b | 0.09±0.02c | 0.14±0.03b | 0.51±0.08c |
N100 | 0.29±0.04c | 0.18±0.03b | 0.17±0.03bc | 0.20±0.03b | 0.83±0.02bc | |
N200 | 0.69±0.08b | 0.16±0.01b | 0.20±0.02b | 0.21±0.03b | 1.26±0.06b | |
N300 | 0.91±0.10a | 0.29±0.04a | 0.33±0.04a | 0.30±0.06a | 1.82±0.11a | |
I65 | N0 | 0.16±0.03d | 0.14±0.02b | 0.15±0.02c | 0.14±0.01c | 0.59±0.05d |
N100 | 0.45±0.06c | 0.13±0.02b | 0.17±0.04bc | 0.24±0.05b | 0.99±0.10c | |
N200 | 0.75±0.12b | 0.25±0.02a | 0.27±0.04ab | 0.24±0.03b | 1.51±0.03b | |
N300 | 1.02±0.09a | 0.27±0.06a | 0.31±0.07a | 0.38±0.05a | 1.97±0.26a | |
I80 | N0 | 0.14±0.02d | 0.13±0.02b | 0.13±0.02b | 0.10±0.03d | 0.49±0.08d |
N100 | 0.49±0.06c | 0.23±0.04a | 0.19±0.03b | 0.18±0.03c | 1.08±0.13c | |
N200 | 0.84±0.06b | 0.22±0.04a | 0.26±0.07a | 0.28±0.04b | 1.59±0.18b | |
N300 | 1.02±0.14a | 0.25±0.08a | 0.31±0.06a | 0.42±0.04a | 2.00±0.19a | |
F值 | 灌水下限(I) | 6.47 | 17.90* | 1.51 | 6.90 | 3.43 |
施氮量(N) | 110.94** | 20.73** | 23.53** | 82.67** | 77.05** | |
I×N | 1.47 | 1.93 | 0.36 | 4.19* | 0.59 |
Tab. 5
Yields, quality and nitrogen absorption of watermelon under different treatments"
处理 | 商品瓜产量/kg∙hm-2 | 可溶性固形物/% | 氮素吸收/kg∙hm-2 | 氮肥利用率/% | |
---|---|---|---|---|---|
I50 | N0 | 53749±554b | 10.19±0.62c | 60.50±4.58c | - |
N100 | 53656±1399b | 10.68±0.67b | 88.88±8.01b | 28.39±4.90a | |
N200 | 58447±576ab | 11.00±0.57a | 102.95±4.40ab | 21.23±2.43b | |
N300 | 61882±2789a | 11.08±0.12a | 113.37±4.97a | 17.62±0.69b | |
I65 | N0 | 59704±2198c | 10.44±0.80c | 62.44±4.48c | - |
N100 | 64561±1085b | 11.20±0.82b | 103.15±5.67b | 40.71±1.50a | |
N200 | 70159±2740a | 11.39±0.62a | 127.69±7.29a | 32.62±1.43b | |
N300 | 68640±1972ab | 11.43±0.67a | 128.30±9.50a | 21.95±1.98c | |
I80 | N0 | 63382±1523c | 10.17±0.40b | 78.54±5.11c | - |
N100 | 65256±1788b | 11.30±0.56ab | 123.65±4.22b | 45.12±3.81a | |
N200 | 71448±1500a | 11.47±0.54a | 130.19±7.63ab | 25.83±1.87b | |
N300 | 67198±2483ab | 11.47±0.42a | 135.34±4.77a | 18.93±1.88c | |
F值 | 灌水下限(I) | 10.14** | 4.66* | 41.25** | 443.24* |
施氮量(N) | 7.86** | 9.64** | 135.64** | 1580.64** | |
I×N | 3.75* | 1.43 | 7.13* | 58.78* |
[1] |
杨世琦. 基于国家粮食安全下的农业面源污染综合防治体系思考[J]. 中国农业科学, 2022, 55(17): 3380-3394.
doi: 10.3864/j.issn.0578-1752.2022.17.010 |
[Yang Shiqi. Thought of pollution comprehensive prevention and control system of non-point sources based on national food security[J]. Scientia Agricultura Sinica, 2022, 55(17): 3380-3394. ]
doi: 10.3864/j.issn.0578-1752.2022.17.010 |
|
[2] | Zhang X, Davidson E A, Mauzerall D L, et al. Managing nitrogen for sustainable development[J]. Nature, 2015, 528: 51-59. |
[3] | 张广斌, 马静, 徐华, 等. 中国农田非CO2温室气体减排的研究现状与建议[J]. 中国科学院院刊, 2023, 38(3): 504-517. |
[Zhang Guangbin, Ma Jing, Xu Hua, et al. Status quo of research and suggestions on reduction of non-CO2 greenhouse gas emission from Chinese farmland[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(3): 504-517. ] | |
[4] | Chen X P, Cui Z L, Fan M S, et al. Producing more grain with lower environmental costs[J]. Nature, 2014, 514: 486-489. |
[5] | Tian H Q, Yang J, Xu R T, et al. Global soil nitrous oxide emissions since the pre-industrial era estimated by an ensemble of terrestrial biosphere models: Magnitude, attribution and uncertainty[J]. Global Change Biology, 2018, 25: 640-659. |
[6] |
杨国英, 郭智, 刘红江, 等. 稻田氨挥发影响因素及其减排措施研究进展[J]. 生态环境学报, 2020, 29(9): 1912-1919.
doi: 10.16258/j.cnki.1674-5906.2020.09.025 |
[Yang Guoying, Guo Zhi, Liu Hongjiang, et al. Research progress on factors affecting ammonia volatilization and its mitigation measures in paddy fields[J]. Ecology and Environmental Sciences, 2020, 29(9): 1912-1919. ] | |
[7] | 乔丹, 张树清, 陈延华, 等. 基施控释氮肥提高华北露地大白菜产量并减少土壤NH3和N2O排放[J]. 植物营养与肥料学报, 2022, 28(6): 1122-1133. |
[Qiao Dan, Zhang Shuqing, Chen Yanhua, et al. Basal application of controlled-release nitrogen fertilizer increases Chinese cabbage production and decreases soil NH3 and N2O emissions in northern China[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(6): 1122-1133. ] | |
[8] | 卢九斤, 聂易丰, 魏娇娇, 等. 不同施氮措施对枸杞园土壤NH3挥发和N2O排放的影响[J]. 农业环境科学学报, 2022, 41(1): 210-220. |
[Lu Jiujin, Nie Yifeng, Wei Jiaojiao, et al. Effects of different nitrogen application measures on NH3 volatilization and N2O emissions in a wolfberry orchard[J]. Journal of Agro-Environment Science, 2022, 41(1): 210-220. ] | |
[9] | 李玥, 巨晓棠. 农田氧化亚氮减排的关键是合理施氮[J]. 农业环境科学学报, 2020, 39(4): 842-851. |
[Li Yue, Ju Xiaotang. Rational nitrogen application is the key to mitigate agricultural nitrous oxide emission[J]. Journal of Agro-Environment Science, 2020, 39(4): 842-851. ] | |
[10] | 高春雨, 邱建军, 王立刚. 农田N2O排放影响因素及减排措施[J]. 安徽农业科学, 2011, 39(4): 2132-2134. |
[Gao Chunyu, Qiu Jianjun, Wang Ligang. The study of influencing factors and mitigation for N2O emission from croplands[J]. Journal of Anhui Agricultural Sciences, 2011, 39(4): 2132-2134. ] | |
[11] | 徐万里, 刘骅, 张云舒, 等. 施肥深度、灌水条件和氨挥发监测方法对氮肥氨挥发特征的影响[J]. 新疆农业科学, 2011, 48(1): 86-93. |
[Xu Wanli, Liu Hua, Zhang Yunshu, et al. Influence of the fertilization depth irrigation and the ammonia volatilization monitoring method on ammonia volatilization characters of nitrogen fertilizer[J]. Xinjiang Agricultural Sciences, 2011, 48(1): 86-93. ] | |
[12] | 颜晓元, 施书莲, 杜丽娟, 等. 水分状况对农田土壤N2O排放的影响[J]. 土壤学报, 2000, 37(4): 482-487. |
[Yan Xiaoyuan, Shi Shulian, Du Lijuan, et al. N2O emission from paddy soil as affected by water regime[J]. Acta Pedologica Sinica, 2000, 37(4): 482-487. ] | |
[13] | 陈慧, 商子惠, 王云霏, 等. 灌水量对温室番茄土壤CO2、N2O和CH4排放的影响[J]. 应用生态学报, 2019, 30(9): 3126-3136. |
[Chen Hui, Shang Zihui, Wang Yunfei, et al. Effects of irrigation amounts on soil CO2, N2O and CH4 emissions in greenhouse tomato field[J]. Chinese Journal of Applied Ecology, 2019, 30(9): 3126-3136. ] | |
[14] | Ding J J, Fang F L, Lin W, et al. N2O emissions and source partitioning using stable isotopes under furrow and drip irrigation in vegetable field of north China[J]. Science of the Total Environment, 2019, 665: 709-717. |
[15] | 周爽, 王广帅, 高阳, 等. 滴灌对农田N2O排放影响的研究进展[J]. 中国农村水利水电, 2020(1): 8-12. |
[Zhou Shuang, Wang Guangshuai, Gao Yang, et al. The effects of drip irrigation on soil N2O emissions from farmland[J]. China Rural Water and Hydropowe, 2020(1): 8-12. ] | |
[16] | 李昊儒, 郝卫平, 梅旭荣, 等. 不同灌溉施肥措施对夏玉米-冬小麦农田N2O排放和产量的影响[J]. 农业工程学报, 2018, 34(16): 103-112. |
[Li Haoru, Hao Weiping, Mei Xurong, et al. Effect of different irrigation and fertilization managements on N2O emissions and yield in summer maize-winter wheat field[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(16): 103-112. ] | |
[17] | Li Z G, Zhang R H, Wang H J, et al. Effects of plastic film mulching with drip irrigation on N2O and CH4 emissions from cotton fields in arid land[J]. Journal of Agricultural Science, 2014, 152(4): 534-542. |
[18] | 王维汉, 毛前, 严爱兰. 滴灌下青椒地N2O排放规律研究[J]. 中国农村水利水电, 2014(7): 31-34. |
[Wang Weihan, Mao Qian, Yan Ailan. N2O emission from green pepper field under drip irrigation[J]. China Rural Water and Hydropowe, 2014(7): 31-34. ] | |
[19] | 郭树芳, 齐玉春, 尹飞虎, 等. 不同灌溉方式对华北平原冬小麦田土壤CO2和N2O排放通量的影响[J]. 环境科学, 2016, 37(5): 1880-1890. |
[Guo Shufang, Qi Yuchun, Yin Feihu, et al. Effect of irrigation patterns on soil CO2 and N2O emissions from winter wheat field in north China Plain[J]. Environmental Science, 2016, 37(5): 1880-1890. ] | |
[20] | Zhang C, Xu R H, Su F, et al. Effects of enhanced efficiency nitrogen fertilizers on NH3 losses in a calcareous fluvo-aquic soil: A laboratory study[J]. Journal of Soils and Sediments, 2020, 20(8): 1-10. |
[21] | 李宗新, 王庆成, 刘开昌, 等. 不同施肥模式下夏玉米田间土壤氨挥发规律[J]. 生态学报, 2009, 29(1): 307-314. |
[Li Zongxin, Wang Qingcheng, Liu Kaichang, et al. Law of field soil ammonia volatilization in summer maize under different fertilizer patterns[J]. Acta Ecologica Sinica, 2009, 29(1): 307-314. ] | |
[22] | Xiao M H, Li Y Y, Wang J W, et al. Study on the law of nitrogen transfer and conversion and use of fertilizer nitrogen in paddy fields under water-saving irrigation mode[J]. Water, 2019, 11(2): 1-13. |
[23] | 李祯, 史海滨, 李仙岳, 等. 不同水氮运筹模式对田间土壤氨挥发及春玉米籽粒产量的影响[J]. 农业环境科学学报, 2017, 36(4): 799-807. |
[Li Zhen, Shi Haibin, Li Xianyue, et al. Ammonia volatilization in soil and grain yield of the spring maize under different water-nitrogen management regimes[J]. Journal of Agro-Environment Science, 2017, 36(4): 799-807. ] | |
[24] | 黄思怡, 田昌, 谢桂先, 等. 控释尿素减少双季稻田氨挥发的主要机理和适宜用量[J]. 植物营养与肥料学报, 2019, 25(12): 2102-2112. |
[Huang Siyi, Tian Chang, Xie Guixian, et al. Mechanism and suitable application dosage of controlled-release urea effectively reducing ammonia volatilization in double-cropping paddy fields[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(12): 2102-2112. ] | |
[25] | 宋春妮, 焦燕, 杨文柱, 等. 我国半干旱区滴灌水肥一体化马铃薯田土壤 NH3挥发特征和强度及影响因素[J]. 环境化学, 2022, 41(1): 173-182. |
[Song Chunni, Jiao Yan, Yang Wenzhu, et al. Characteristics and intensity of soil ammonia volatilization and study on influencing factors in potato fields under drip integration water and fertilizer integration in semi-arid region of China[J]. Environmental Chemistry, 2022, 41(1): 173-182. ] | |
[26] |
李燕强, 王振华, 叶含春, 等. 灌溉水矿化度对棉田土壤呼吸速率的影响[J]. 干旱区研究, 2023, 40(3): 392-402.
doi: 10.13866/j.azr.2023.03.06 |
[Li Yanqiang, Wang Zhenhua, Ye Hanchun, et al. Effect of the salinity of irrigation water on soil respiration rate in cotton field[J]. Arid Zone Research, 2023, 40(3): 392-402. ]
doi: 10.13866/j.azr.2023.03.06 |
|
[27] | Martin B, Louise E, Jachson E J, et al. Microbial responses and nitrous oxide emissions during wetting and drying of organically and conventionally managed soil under tomatoes[J]. Biology and Fertility of Soils, 2005(42): 109-118. |
[28] | 宋毅, 张璐, 韩天富, 等. 长期施肥下红壤玉米关键生育期氧化亚氮排放差异及其影响因素[J]. 植物营养与肥料学报, 2023, 29(10): 1794-1804. |
[Song Yi, Zhang Lu, Han Tianfu, et al. Red soil N2O emission difference caused by fertilizers and other factors at the key growth stages of maize[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(10): 1794-1804. ] | |
[29] |
李燕青, 唐继伟, 车升国, 等. 长期施用有机肥与化肥氮对华北夏玉米N2O和CO2排放的影响[J]. 中国农业科学, 2015, 48(21): 4381-4389.
doi: 10.3864/j.issn.0578-1752.2015.21.018 |
[Li Yanqing, Tang Jiwei, Che Shengguo, et al. Effect of organic and inorganic fertilizer on the emission of CO2 and N2O from the summer maize field in the north China Plain[J]. Scientia Agricultura Sinica, 2015, 48(21): 4381-4389. ]
doi: 10.3864/j.issn.0578-1752.2015.21.018 |
|
[30] | Hink L, Nicol G W, Prosser J I. Archaea produce lower yields of N2O than bacteria during aerobic ammonia oxidation in soil[J]. Environmental Microbiology, 2016, 19(12): 4829-4837. |
[31] | Philippot L, Andert J, Jones C M, et al. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil[J]. Global Change Biology, 2011, 17: 1497-1504. |
[32] | 江雨倩, 李虎, 王艳丽, 等. 滴灌施肥对设施菜地N2O 排放的影响及减排贡献[J]. 农业环境科学学报, 2016, 35(8): 1616-1624. |
[Jiang Yuqian, Li Hu, Wang Yanli, et al. Effects of fertigation on N2O emissions and their mitigation in greenhouse vegetable fields[J]. Journal of Agro-Environment Science, 2016, 35(8): 1616-1624. ] | |
[33] | 王娟, 马腾飞, 危常州, 等. 不同灌溉方式对棉花氮素吸收利用和氮肥利用率的影响[J]. 石河子大学学报(自然科学版), 2011, 29(6): 670-673. |
[Wang Juan, Ma Tengfei, Wei Changzhou, et al. Effect of different irrigation patterns on cotton nitrogen absorption and nitrogen fertilizer use efficiency[J]. Journal of Shihezi University (Natural Science Edition), 2011, 29(6): 670-673. ] | |
[34] |
李前, 秦裕波, 尹彩侠, 等. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响[J]. 中国农业科学, 2022, 55(8): 1604-1616.
doi: 10.3864/j.issn.0578-1752.2022.08.011 |
[Li Qian, Qin Yubo, Yin Caixia, et al. Effect of drip fertigation mode on maize yield, nutrient uptake and economic benefit[J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616. ]
doi: 10.3864/j.issn.0578-1752.2022.08.011 |
|
[35] | 李世清, 李东方, 李凤民, 等. 半干旱农田生态系统地膜覆盖的土壤生态效应[J]. 西北农林科技大学学报(自然科学版), 2003, 31(5): 21-29. |
[Li Shiqing, Li Dongfang, Li Fengmin, et al. Soil ecological effects of plastic film mulching in semiarid agro-ecological system[J]. Journal of Northwest A & F University (Natural Science Edition), 2003, 31(5): 21-29. ] | |
[36] | 陈秀香, 马富裕, 方志刚, 等. 土壤水分含量对加工番茄产量和品质影响的研究[J]. 节水灌溉, 2006(4): 1-4. |
[Chen Xiuxiang, Ma Fuyu, Fang Zhigang, et al. Preliminary study on the influence of soil moisture on yield and quality of processed tomato[J]. Water Saving Irrigation, 2006(4): 1-4. ] | |
[37] | 徐明磊. 番茄高可溶性固形物种质的创造及相关基因表达研究[D]. 重庆: 西南大学, 2006. |
[Xu Minglei, Establishment of new tomato breeding germplasm of increasing soluble solids content and differential expression of genes related soluble solids content in tomato[D]. Chongqing: Southwest University, 2006. ] |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 61
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 93
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|