Arid Land Geography ›› 2024, Vol. 47 ›› Issue (12): 2030-2040.doi: 10.12118/j.issn.1000-6060.2024.154
• Biology and Environment • Previous Articles Next Articles
HAN Huan1,2(), YUAN Ping3, LI Congjuan1(), ZHAO Hongmei3,4
Received:
2024-03-07
Revised:
2024-05-22
Online:
2024-12-25
Published:
2025-01-02
Contact:
LI Congjuan
E-mail:hanhuan21@mails.ucas.ac.cn;licj@ms.xjb.ac.cn
HAN Huan, YUAN Ping, LI Congjuan, ZHAO Hongmei. Effects of saline water irrigation on litter decomposition and soil organic carbon mineralization[J].Arid Land Geography, 2024, 47(12): 2030-2040.
Tab. 2
Olsen negative exponential modeling of litter decomposition in indoor decomposition experiments"
种类 | 盐浓度/g·L-1 | 分解模型 | 分解指数(k) | R2 | t0.5/月 | t0.95/月 |
---|---|---|---|---|---|---|
胡杨 | 0.0(S0) | Y=87.29e-0.127t | 0.127 | 0.78 | 5.44 | 23.50 |
7.5(S1) | Y=86.71e-0.078t | 0.078 | 0.65 | 8.84 | 38.19 | |
15.0(S2) | Y=86.14e-0.084t | 0.084 | 0.64 | 8.29 | 35.81 | |
22.5(S3) | Y=86.46e-0.087t | 0.087 | 0.67 | 7.93 | 34.26 | |
30.0(S4) | Y=88.68e-0.056t | 0.056 | 0.62 | 12.37 | 53.47 | |
杜梨 | 0.0(S0) | Y=89.88e-0.108t | 0.108 | 0.84 | 6.44 | 27.82 |
7.5(S1) | Y=90.27e-0.075t | 0.075 | 0.77 | 9.28 | 40.10 | |
15.0(S2) | Y=90.09e-0.049t | 0.049 | 0.62 | 14.27 | 61.69 | |
22.5(S3) | Y=92.31e-0.042t | 0.042 | 0.71 | 16.64 | 71.91 | |
30.0(S4) | Y=95.06e-0.036t | 0.036 | 0.81 | 19.03 | 82.26 |
Tab. 4
Dynamics parameters of soil mineralization in Populus euphratica and Pyrus betulifolia under the addition of saline water with different concentration levels"
类型 | 浓度 | C0/mg·kg-1 | k/d-1 | R2 | |
---|---|---|---|---|---|
胡杨 | S0 | 6949.67 | 0.039 | 0.982 | 17.77 |
S1 | 6628.17 | 0.044 | 0.990 | 15.72 | |
S2 | 6543.21 | 0.041 | 0.989 | 16.74 | |
S3 | 7108.67 | 0.035 | 0.990 | 19.67 | |
S4 | 6901.68 | 0.034 | 0.991 | 20.54 | |
杜梨 | S0 | 6599.58 | 0.039 | 0.979 | 17.70 |
S1 | 5928.81 | 0.045 | 0.987 | 15.43 | |
S2 | 5735.28 | 0.046 | 0.985 | 15.06 | |
S3 | 6125.18 | 0.041 | 0.983 | 17.02 | |
S4 | 6613.02 | 0.036 | 0.985 | 19.49 |
[1] | Krishna M P, Mohan M. Litter decomposition in forest ecosystems: A review[J]. Energy, Ecology and Environment, 2017, 2(4): 236-249. |
[2] | Córdova S C, Olk D C, Dietzel R N, et al. Plant litter quality affects the accumulation rate, composition, and stability of mineral-associated soil organic matter[J]. Soil Biology and Biochemistry, 2018, 125: 115-124. |
[3] | Gómez R, Asencio A D, Picón J M, et al. The effect of water salinity on wood breakdown in semiarid Mediterranean streams[J]. Science of the Total Environment, 2016, 541: 491-501. |
[4] | Zhang X M, Wang Y D, Zhao Y, et al. Litter decomposition and nutrient dynamics of three woody halophytes in the Taklimakan Desert Highway Shelterbelt[J]. Arid Land Research and Management, 2017, 31(3): 335-351. |
[5] |
张少磊, 张建国, 常闻谦, 等. 凋落物添加条件下咸水灌溉对风沙土CO2排放及化学性质的影响[J]. 应用生态学报, 2020, 31(11): 3639-3646.
doi: 10.13287/j.1001-9332.202011.003 |
[Zhang Shaolei, Zhang Jianguo, Chang Wenqian, et al. Effects of saline irrigation on CO2 emission and chemical properties of aeolian sandy soil under litter addition[J]. Chinese Journal of Applied Ecology, 2020, 31(11): 3639-3646.]
doi: 10.13287/j.1001-9332.202011.003 |
|
[6] |
Zhang D Q, Hui D F, Luo Y Q, et al. Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors[J]. Journal of Plant Ecology, 2008, 1(2): 85-93.
doi: 10.1093/jpe/rtn002 |
[7] | Huang G, Zhao H M, Li Y. Litter decomposition in hyper-arid deserts: Photodegradation is still important[J]. Science of the Total Environment, 2017, 601-602: 784-792. |
[8] | Rath K M, Murphy D N, Rousk J. The microbial community size, structure, and process rates along natural gradients of soil salinity[J]. Soil Biology and Biochemistry, 2019, 138: 107607, doi: 10.1016/j.soilbio.2019.107607. |
[9] |
王嘉年, 李向义, 李成道, 等. 自然光照和荫蔽条件下两种荒漠植物叶片凋落物分解特征研究[J]. 干旱区地理, 2023, 46(6): 949-957.
doi: 10.12118/j.issn.1000-6060.2022.434 |
[Wang Jianian, Li Xiangyi, Li Chengdao, et al. Decomposition characteristics of two desert plant leaf under natural light and shade environment[J]. Arid Land Geography, 2023, 46(6): 949-957.]
doi: 10.12118/j.issn.1000-6060.2022.434 |
|
[10] | Zhang J W, Qin T L, Xiao S B, et al. Research advances on carbon-water relationship of forest litter-soil interface[J]. Polish Journal of Environmental Studies, 2022, 31(4): 3919-3928. |
[11] | 孟盈盈, 张黎明, 远勇帅, 等. 土壤水分含量和凋落物特性对陌上菅细根和叶片凋落物分解的影响[J]. 环境科学研究, 2021, 34(3): 707-714. |
[Meng Yingying, Zhang Liming, Yuan Yongshuai, et al. Effects of soil moisture content and litter quality on decomposition of Cares thunbergii fine roots and leaf litter[J]. Research of Environmental Sciences, 2021, 34(3): 707-714.] | |
[12] | Jin V L, Haney R L, Fay P A, et al. Soil type and moisture regime control microbial C and N mineralization in grassland soils more than atmospheric CO2-induced changes in litter quality[J]. Soil Biology and Biochemistry, 2013, 58: 172-180. |
[13] | Wang Q, Zeng Z, Zhong M. Soil moisture alters the response of soil organic carbon mineralization to litter addition[J]. Ecosystems, 2016, 19(3): 450-460. |
[14] | Larionova A A, Maltseva A N, Lopes de Gerenyu V O, et al. Effect of temperature and moisture on the mineralization and humification of leaf litter in a model incubation experiment[J]. Eurasian Soil Science, 2017, 50(4): 422-431. |
[15] |
姜萍, 原野. 新疆植被总初级生产力对大气水分亏缺的响应[J]. 干旱区地理, 2024, 47(3): 403-412.
doi: 10.12118/j.issn.1000-6060.2023.413 |
[Jiang Ping, Yuan Ye. Responses of vegetation gross primary production to vapor pressure deficit in Xinjiang[J]. Arid Land Geography, 2024, 47(3): 403-412.]
doi: 10.12118/j.issn.1000-6060.2023.413 |
|
[16] |
Wu L, Zhang Y, Guo X, et al. Reduction of microbial diversity in grassland soil is driven by long-term climate warming[J]. Nature Microbiology, 2022, 7(7): 1054-1062.
doi: 10.1038/s41564-022-01147-3 pmid: 35697795 |
[17] | 解婷婷, 单立山, 张鹏. 不同水分条件下杨树-玉米复合系统凋落物分解特性[J]. 生态学报, 2022, 42(19): 8041-8049. |
[Xie Tingting, Shan Lishan, Zhang Peng. Litter decomposition characteristics of poplar-maize agroforestry system under different water conditions[J]. Acta Ecologica Sinica, 2022, 42(19): 8041-8049.] | |
[18] | Li C J, Lei J Q, Zhao Y, et al. Effect of saline water irrigation on soil development and plant growth in the Taklimakan Desert Highway Shelterbelt[J]. Soil and Tillage Research, 2015, 146: 99-107. |
[19] |
李燕强, 王振华, 叶含春, 等. 灌溉水矿化度对棉田土壤呼吸速率的影响[J]. 干旱区研究, 2023, 40(3): 392-402.
doi: 10.13866/j.azr.2023.03.06 |
[Li Yanqiang, Wang Zhenhua, Ye Hanchun, et al. Effect of the salinity of irrigation water on soil respiration rate in cotton field[J]. Arid Zone Research, 2023, 40(3): 392-402.]
doi: 10.13866/j.azr.2023.03.06 |
|
[20] | 王维奇, 王纯, 刘白贵. 盐度对湿地枯落物分解过程中碳氮磷化学计量比的影响[J]. 中国环境科学, 2012, 32(9): 1683-1687. |
[Wang Weiqi, Wang Chun, Liu Baigui. Effect of salinity on carbon, nitrogen and phosphorus stoichiometry during the decomposition of wetland litter[J]. China Environmental Science, 2012, 32(9): 1683-1687.] | |
[21] | 胡伟芳, 曾从盛, 张美颖, 等. 盐度和水淹对短叶茳芏枯落物分解和二氧化碳释放的影响[J]. 环境科学学报, 2017, 37(10): 4011-4018. |
[Hu Weifang, Zeng Congsheng, Zhang Meiying, et al. Effect of salinity and inundation on the decomposition of Cyperus malaccensis litter and carbon dioxide release[J]. Acta Scientiae Circumstantiae, 2017, 37(10): 4011-4018.] | |
[22] | Li C J, Wang Y D, Lei J Q, et al. Damage by wind-blown sand and its control measures along the Taklimakan Desert Highway in China[J]. Journal of Arid Land, 2020, 13(1): 98-106. |
[23] |
袁萍, 韩欢, 赵红梅, 等. 裸露与沙埋对极端干旱区凋落物分解和养分释放的影响[J]. 干旱区研究, 2024, 41(2): 293-300.
doi: 10.13866/j.azr.2024.02.12 |
[Yuan Ping, Han Huan, Zhao Hongmei, et al. Effects of bare versus sand burial on the decomposition and nutrient release of apophyges in extremely arid zones[J]. Arid Zone Research, 2024, 41(2): 293-300.]
doi: 10.13866/j.azr.2024.02.12 |
|
[24] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000: 12-14, 74-77. |
[Lu Rukun. Soil and agro-chemistry analytical methods[M]. Beijing: Chine Agricultural Science and Technology Press, 2000: 12-14, 74-77.] | |
[25] | Yang G, Liu S H, Yan K, et al. Effect of drip irrigation with brackish water on the soil chemical properties for a typical desert plant (Haloxylon ammodendron) in the Manas River Basin[J]. Irrigation and Drainage, 2020, 69(3): 460-471. |
[26] |
蒙慧敏, 占车生, 胡实, 等. 大型灌区土壤水盐运移模拟研究进展[J]. 干旱区地理, 2024, 47(9): 1566-1576.
doi: 10.12118/j.issn.1000-6060.2023.717 |
[Meng Huimin, Zhan Chesheng, Hu Shi, et al. Research progress on stimulation of soil water-salt transport in large-scale irrigation districts[J]. Arid Land Geography, 2024, 47(9): 1566-1576.]
doi: 10.12118/j.issn.1000-6060.2023.717 |
|
[27] | Ding B, Bai Y, Guo S, et al. Effect of irrigation water salinity on soil characteristics and microbial communities in cotton fields in southern Xinjiang, China[J]. Agronomy, 2023, 13(7): 1679, doi: 10.3390/agronomy13071679. |
[28] | 杜思垚, 陈静, 刘佳炜, 等. 基于宏基因组学揭示咸水滴灌对棉田土壤微生物的影响[J]. 环境科学, 2023, 44(2): 1104-1119. |
[Du Siyao, Chen Jing, Liu Jiayi, et al. Revealing the effect of saline water drip irrigation on soil microorganisms in cotton fields based on metagenomics[J]. Enviornmental Science, 2023, 44(2):1104-1119.] | |
[29] | 丁艳, 张晓雅, 高俊琴, 等. 水分变化对若尔盖高寒湿地木里薹草(Carex muliensis)枯落物分解及CO2排放的影响[J]. 生态与农村环境学报, 2019, 35(8): 1027-1033. |
[Ding Yan, Zhang Xiaoya, Gao Junqin, et al. Effects of water change on decomposition and CO2 emission of litter of Carex muliensis in Zoige alpine wetland[J]. Journal of Ecology and Rural Environment, 2019, 35(8): 1027-1033.] | |
[30] | Yan W M, Zhong Y Q W, Zhu G Y, et al. Nutrient limitation of litter decomposition with long-term secondary succession: Evidence from controlled laboratory experiments[J]. Journal of Soils and Sediments, 2020, 20(4): 1858-1868. |
[31] | Li H X, Ma H L, Yin Y F, et al. Dynamic of labile, recalcitrant carbon and nitrogen during the litter decomposition in a subtropical natural broadleaf forest[J]. Chinese Journal of Plant Ecology, 2023, 47(5): 618-628. |
[32] | Kuzyakov Y, Friedel J K, Stahr K. Review of mechanisms and quantification of priming effects[J]. Soil Biology & Biochemistry, 2000, 32: 1485-1498. |
[33] | 王瑷华, 苏以荣, 李杨, 等. 稻草还田条件下水田和旱地土壤有机碳矿化特征与差异[J]. 土壤学报, 2011, 48(5): 979-987. |
[Wang Aihua, Su Yirong, Li Yang, et al. Characteristics of mineralization of soil organic carbon in paddy and upload with rice straw incorporated and differences between the two[J]. Acta Pedologica Sinica, 2011, 48(5): 979-987.] | |
[34] | Kéraval B, Lehours A C, Colombet J, et al. Soil carbon dioxide emissions controlled by an extracellular oxidative metabolism identifiable by its isotope signature[J]. Biogeosciences, 2016, 13(22): 6353-6362. |
[35] | Yalu H, Chengfu Z, Runcai G, et al. Effects of salinity and pH change conditions on organic carbon mineralization in saline alkali land[J]. Polish Journal of Environmental Studies, 2023, 32(6): 5885-5897. |
[36] | Wichern J, Wichern F, Joergensen R G. Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils[J]. Geoderma, 2006, 137(1-2): 100-108. |
[37] | 李会文, 管瑶, 贺兴宏, 等. 咸淡水组合灌溉模式对棉田土壤CO2日排放特征影响[J]. 灌溉排水学报, 2023, 42(7): 60-67. |
[Li Huiwen, Guan Yao, He Xinghong, et al. Effects of irrigation with mixed saline and fresh waters on CO2 emission from cotton fields[J]. Journal of Irrigation and Drainage, 2023, 42(7): 60-67.] | |
[38] |
郭晓雯, 杜思垚, 王芳霞, 等. 长期咸水滴灌对棉田土壤细菌和真菌群落结构的影响[J]. 新疆农业科学, 2022, 59(12): 2909-2923.
doi: 10.6048/j.issn.1001-4330.2022.12.006 |
[Guo Xiaowen, Du Siyao, Wang Fangxia, et al. Effects of long-term saline water irrigation on soil bacteria and fungi community structure in cotton field[J]. Xinjiang Agricultural Sciences, 2022, 59(12): 2909-2923.]
doi: 10.6048/j.issn.1001-4330.2022.12.006 |
|
[39] | 李学斌, 陈林, 吴秀玲, 等. 荒漠草原4种典型植物群落枯落物分解速率及影响因素[J]. 生态学报, 2015, 35(12): 4105-4114. |
[Li Xuebin, Chen Lin, Wu Xiuling, et al. Litter decomposition rates and influencing factors of four typical plant communities in desert steppe[J]. Acta Ecologica Sinica, 2015, 35(12): 4105-4114.] | |
[40] | 苏卓侠, 苏冰倩, 上官周平. 植物凋落物分解对土壤有机碳稳定性影响的研究进展[J]. 水土保持研究, 2022, 29(2): 406-413. |
[Su Zhuoxia, Su Bingqian, Shangguan Zhouping. Advances in effects of plant litter decomposition on the stability of soil organic carbon[J]. Research of Soil and Water Conservation, 2022, 29(2): 406-413.] | |
[41] | Whalen E D, Grandy A S, Sokol N W, et al. Clarifying the evidence for microbial- and plant-derived soil organic matter, and the path toward a more quantitative understanding[J]. Global Change Biology, 2022, 28(24): 7167-7185. |
[42] | Zhou Y, Pei Z Q, Su J Q, et al. Comparing soil organic carbon dynamics in perennial grasses and shrubs in a saline-alkaline arid region, northwestern China[J]. PLoS ONE, 2012, 7(8): e42927, doi: 10.1371/journal.pone.0042927. |
[43] | Cotrufo M F, Haddix M L, Kroeger M E, et al. The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter[J]. Soil Biology and Biochemistry, 2022, 168: 108648,doi: 10.1016/j.soilbio.2022.108648. |
[44] | Bradford M A, Wieder W R, Bonan G B, et al. Managing uncertainty in soil carbon feedbacks to climate change[J]. Nature Climate Change, 2016, 6(8): 751-758. |
[45] | Xiang W, Freeman C. Annual variation of temperature sensitivity of soil organic carbon decomposition in north peatlands: Implications for thermal responses of carbon cycling to global warming[J]. Environmental Geology, 2008, 58(3): 499-508. |
[46] | Cai Y, Ma T, Wang Y, et al. Assessing the accumulation efficiency of various microbial carbon components in soils of different minerals[J]. Geoderma, 2022, 407: 115562, doi: 10.1016/j.geoderma.2021.115562. |
|