收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2024, Vol. 47 ›› Issue (12): 2152-2163.doi: 10.12118/j.issn.1000-6060.2024.142 cstr: 32274.14.ALG2024142

• 区域发展 • 上一篇    下一篇

生态福利绩效时空演化及影响因素研究——以山西省为例

王紫彦1(), 牛莉芹2(), 程占红1   

  1. 1.山西财经大学文化旅游与新闻艺术学院,山西 太原 030006
    2.山西财经大学资源环境学院,山西 太原 030006
  • 收稿日期:2024-03-04 修回日期:2024-05-30 出版日期:2024-12-25 发布日期:2025-01-02
  • 通讯作者: 牛莉芹(1976-),女,教授,主要从事生态环境管理研究. E-mail: nlq1976@126.com
  • 作者简介:王紫彦(1996-),女,博士研究生,主要从事生态环境管理研究. E-mail: wzyyyyyy0906@163.com
  • 基金资助:
    教育部人文社会科学研究项目(14YJA630005);山西省哲学社会科学规划项目(2023YY155)

Temporal and spatial evolution of ecological welfare performance and its influencing factors: A case of Shanxi Province

WANG Ziyan1(), NIU Liqin2(), CHENG Zhanhong1   

  1. 1. School of Culture and Journalism Arts, Shanxi University of Finance and Economics, Taiyuan 030006, Shanxi, China
    2. College of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan 030006, Shanxi, China
  • Received:2024-03-04 Revised:2024-05-30 Published:2024-12-25 Online:2025-01-02

摘要:

生态福利绩效统筹人类社会系统和自然环境系统,对于衡量资源型城市可持续发展能力具有重要意义。利用super-SBM模型对山西省2006—2021年生态福利绩效进行测度,利用标准差椭圆和GIS空间可视化分析了生态福利绩效时空演变规律,并通过熵权法和Dagum基尼系数识别生态福利绩效偏低的原因及区域差异来源,最后利用地理探测器探究其驱动因素。结果表明:(1)山西省各地市生态福利绩效均值为0.681;不同地市之间生态福利绩效水平及提升效果存在差异。(2)研究期内,生态福利绩效重心坐标呈现由北向南、转而向西南移动的态势;不同类型地区之间维持现状的概率较大。(3)综合指数解构方面,资源消耗的增长及人类发展指数较低是造成生态福利绩效水平低的主要原因;区域间差异是生态福利绩效地区差异的主要来源。(4)驱动因素方面,城镇化水平是关键的驱动因素;对外开放程度与其他因子的协同作用是形成生态福利绩效现状的主要驱动因素。研究结果对山西省提升生态福利绩效水平、实现转型跨越式新发展具有重要的现实意义。

关键词: 生态福利绩效, super-SBM模型, 时空演化, 地理探测器, 山西省

Abstract:

Ecological welfare performance integrates the human social system and the natural environmental system, serving as a critical metric for assessing the sustainable development capability of resource-oriented cities. This study employs the super-SBM model to evaluate the ecological welfare performance of Shanxi Province, China from 2006 to 2021. The spatial and temporal evolution of ecological welfare performance is analyzed using the standard deviation ellipse and GIS spatial visualization. In addition, the entropy weighting method and the Dagum Gini coefficient are applied to identify the causes of low ecological welfare performance and the sources of regional disparities. Finally, the Geodetector method is used to investigate the driving factors. The findings indicate that: (1) The mean ecological welfare performance across municipalities in Shanxi Province is 0.681, with significant variation in levels and enhancement effects among municipalities. (2) During the study period, the center of gravity of ecological welfare performance shifted from the north to the south and subsequently to the southwest, with a high likelihood of maintaining the status quo across different types of regions. (3) Regarding the composite index deconstruction, increased resource consumption and a low human development index are identified as primary contributors to the low levels of ecological welfare performance. Inter-regional differences constitute the main source of regional disparities. (4) Urbanization emerges as a key driving factor, while the degree of openness to external influences, in synergy with other factors, plays a pivotal role in shaping the current state of ecological welfare performance. These findings have significant practical implications for enhancing the ecological welfare performance in Shanxi Province and achieving transformative and leapfrog development.

Key words: ecological welfare performanc, super-SBM model, spatio-temporal evolution, geographic detectore, Shanxi Province