[1] |
Sun F, Wang Y, Chen Y N, et al. Historic and simulated desert-oasis ecotone changes in the arid Tarim River Basin, China[J]. Remote Sensing, 2021, 13(4): 647, doi: 10.3390/rs13040647.
|
[2] |
Huang J, Ji F. Effects of climate change on phenological trends and seed cotton yields in oasis of arid regions[J]. International Journal of Biometeorology, 2015, 59(7): 877-888.
doi: 10.1007/s00484-014-0904-7
pmid: 25240389
|
[3] |
Hao X M, Hao H C, Zhang J J. Soil moisture influenced the variability of air temperature and oasis effect in a large inland basin of an arid region[J]. Hydrological Process, 2021, 35(6), e14246, doi: 10.1002/hyp.14246.
|
[4] |
Li C J, Fu B J, Wang S, et al. Drivers and impacts of changes in China’s drylands[J]. Nature Reviews Earth and Environment, 2021, 2(12): 858-873.
doi: 10.1038/s43017-021-00226-z
|
[5] |
陈亚宁, 郝兴明, 陈亚鹏, 等. 新疆塔里木河流域水系连通与生态保护对策研究[J]. 中国科学院院刊, 2019, 34(10): 1156-1164.
|
|
[Chen Yaning, Hao Xingming, Chen Yapeng, et al. Study on water system connectivity and ecological protection countermeasures of Tarim River Basin in Xinjiang[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(10): 1156-1164.]
|
[6] |
陈亚宁, 陈亚鹏, 朱成刚, 等. 西北干旱荒漠区生态系统可持续管理理念与模式[J]. 生态学报, 2019, 39(20): 7410-7417.
|
|
[Chen Yaning, Chen Yapeng, Zhu Chenggang, et al. The concept and mode of ecosystem sustainable management in arid desert areas in northwest China[J]. Acta Ecologica Sinica, 2019, 39(20): 7410-7417.]
|
[7] |
陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1): 18-26.
doi: 10.11821/dlxb201701002
|
|
[Chen Yaning, Li Zhi, Fang Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountians, Central Asia[J]. Acta Geographica Sinica, 2017, 72(1): 18-26.]
doi: 10.11821/dlxb201701002
|
[8] |
Zhang Z T, Xu E Q, Zhang H Q. Complex network and redundancy analysis of spatial-temporal dynamic changes and driving forces behind changes in oases within the Tarim Basin in northwestern China[J]. Catena, 2021, 201: 105216, doi: 10.1016/j.catena.2021.105216.
|
[9] |
Li Z, Chen Y N, Zhang Q F, et al. Spatial patterns of vegetation carbon sinks and sources under water constraint in Central Asia[J]. Journal of Hydrology, 2020, 590: 125355, doi: 10.1016/j.jhydrol.2020.125355.
|
[10] |
孙帆, 王弋, 陈亚宁. 塔里木盆地荒漠-绿洲过渡带动态变化及其影响因素[J]. 生态学杂志, 2020, 39(10): 3397-3407.
doi: 10.13292/j.1000-4890.202010.006
|
|
[Sun Fan, Wang Yi, Chen Yaning. Dynamics of desert-oasis ecotone and its influencing factors in Tarim Basin[J]. Chinese Journal of Ecology, 2020, 39(10): 3397-3407.]
doi: 10.13292/j.1000-4890.202010.006
|
[11] |
Pei Z F, Fang S B, Yang W N, et al. The relationship between NDVI and climate factors at different monthly time scales: A case study of grasslands in Inner Mongolia, China (1982—2015)[J]. Sustainability, 2019, 11(24): 7243, doi: 10.3390/su11247243.
|
[12] |
Liu Y, Li L H, Chen Xi, et al. Temporal-spatial variations and influencing factors of vegetation cover in Xinjiang from 1982 to 2013 based on GIMMS-NDVI3g[J]. Global and Planet Change, 2018, 169: 145-155.
doi: 10.1016/j.gloplacha.2018.06.005
|
[13] |
Shi G, Ye P, Ding L, et al. Spatio-temporal patterns of land use and cover change from 1990 to 2010: A case study of Jiangsu Province, China[J]. International Journal of Environmental Research and Public Health, 2019, 16(6): 907, doi: 10.3390/ijerph16060907.
|
[14] |
Zhang J J, Hao X M, Hao H C, et al. Climate change decreased net ecosystem productivity in the arid region of Central Asia[J]. Remote Sensing, 2021, 13(21): 4449, doi: 10.3390/rs13214449.
|
[15] |
Gao P W, Kasimu A, Zhao Y Y, et al. Evaluation of the temporal and spatial changes of ecological quality in the Hami oasis based on RSEI[J]. Sustainability, 2020, 12(18): 7716, doi: 10.3390/su12187716.
|
[16] |
Wang J, Liu D W, Ma J L, et al. Development of a large-scale remote sensing ecological index in arid areas and its application in the Aral Sea Basin[J]. Journal of Arid Land, 2021, 13(1): 40-55.
doi: 10.1007/s40333-021-0052-y
|
[17] |
李鹏辉, 徐丽萍, 刘笑, 等. 基于三维生态足迹模型的天山北麓绿洲生态安全评价[J]. 干旱区研究, 2020, 37(5): 1337-1345.
|
|
[Li Penghui, Xu Liping, Liu Xiao, et al. Ecological security evaluation of an oasis in the north of the Tianshan Mountains based on three-dimensional ecological footprint model[J]. Arid Zone Research, 2020, 37(5):1337-1345.]
|
[18] |
Fang G H, Yang J, Chen Y N, et al. How hydrologic processes differ spatially in a large basin: Multisite and multiobjective modeling in the Tarim River Basin[J]. Journal of Geophysical Research: Atmospheres, 2018, 123: 7098-7113.
doi: 10.1029/2018JD028423
|
[19] |
Zhang Q F, Chen Y N, Li Z, et al. Recent changes in water discharge in snow and glacier melt-dominated rivers in the Tienshan Mountains, Central Asia[J]. Remote Sensing, 2020, 12(17): 2704, doi: 10.3390/rs12172704.
|
[20] |
Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production: A process model based on global satellite and surface data[J]. Global Biogeochemical Cycles, 1993, 7(4): 811-841.
doi: 10.1029/93GB02725
|
[21] |
Chen Y N, Li W H, Deng H J, et al. Changes in Central Asia’s water tower: Past, present and future[J]. Scientific Reports, 2016, 6: 35458, doi: 10.1038/srep35458.
|
[22] |
Farinotti D, Longuevergne L, Moholdt G, et al. Substantial glacier mass loss in the Tien Shan over the past 50 years[J]. Nature Geoscience, 2015, 8(9): 716-722.
doi: 10.1038/NGEO2513
|
[23] |
Gao L, Deng H J, Lei X Y, et al. Evidence for elevation-dependent warming from the Chinese Tianshan Mountains[J]. Cryosphere, 2021, 15(12): 5765-5783.
doi: 10.5194/tc-15-5765-2021
|
[24] |
Liu J, Lawson D E, Hawley R L, et al. Estimating the longevity of glaciers in the Xinjiang region of the Tian Shan through observations of glacier area change since the Little Ice Age using high-resolution imagery[J]. Journal of Glaciology, 2020, 66(257): 471-484.
doi: 10.1017/jog.2020.24
|
[25] |
向燕芸, 陈亚宁, 张齐飞, 等. 天山开都河流域积雪、径流变化及影响因子分析[J]. 资源科学, 2018, 40(9): 1855-1865.
doi: 10.18402/resci.2018.09.15
|
|
[Xiang Yanyun, Chen Yaning, Zhang Qifei, el al. Trends of snow cover and streamflow variation in Kaidu River and their influential factors[J]. Resources Science, 2018, 40(9): 1855-1865.]
doi: 10.18402/resci.2018.09.15
|
[26] |
邓海军, 陈亚宁. 中亚天山山区冰雪变化及其对区域水资源的影响[J]. 地理学报, 2018, 73(7): 1309-1323.
doi: 10.11821/dlxb201807010
|
|
[Deng Haijun, Chen Yaning. The glacier and snow variations and their impact on water resources in mountain regions: A case study in Tianshan Mountains of Central Asia[J]. Acta Geographica Sinica, 2018, 73(7): 1309-1323.]
doi: 10.11821/dlxb201807010
|
[27] |
Bonekamp P N J, Kok R J, Collier E, et al. Contrasting meteorological drivers of the glacier mass balance between the Karakoram and central Himalaya[J]. Frontiers in Earth Science, 2019, 7: 107, doi: 10.3389/feart.2019.00107.
|
[28] |
李海娟. 近30年喀喇昆仑山东部北坡主要冰川变化的遥感监测[D]. 昆明: 云南大学, 2021.
|
|
[Li Haijuan. Remote sensing study on main glacier changes in the past 30 years on the north slope of the eastern Karakoram[D]. Kunming: Yunnan University, 2021.]
|
[29] |
Dimri A P. Decoding the Karakoram anomaly[J]. Science of the Total Environment, 2021, 788(7): 147864, doi: 10.1016/j.scitotenv.2021.147864.
|
[30] |
Farinotti D, Immerzeel W W, de Kok R J, et al. Manifestations and mechanisms of the Karakoram glacier anomaly[J]. Nature Geoscience, 2020, 13(1): 8-16.
doi: 10.1038/s41561-019-0513-5
pmid: 31915463
|
[31] |
de Kok R J, Kraaijenbrink P D A, Tuinenburg O A, et al. Towards understanding the pattern of glacier mass balances in High Mountain Asia using regional climatic modelling[J]. The Cryosphere, 2020, 14(9): 3215-3234.
doi: 10.5194/tc-14-3215-2020
|
[32] |
Zhang Y, An C B, Liu L Y, et al. High mountains becoming wetter while deserts getting drier in Xinjiang, China since the 1980s[J]. Land, 2021, 10(11): 1131, doi: 10.3390/land10111131.
|
[33] |
李玉焦, 陈亚宁, 张齐飞, 等. 1960—2018年博斯腾湖水位变化特征及其影响因素分析[J]. 干旱区研究, 2021, 38(1): 48-58.
|
|
[Li Yujiao, Chen Yaning, Zhang Qifei, et al. Analysis of the change in water level and its influencing factors on Bosten Lake from 1960 to 2018[J]. Arid Zone Research, 2021, 38(1): 48-58.]
|
[34] |
Deng H J, Chen Y N, Li Q H, et al. Loss of terrestrial water storage in the Tianshan Mountains from 2003 to 2015[J]. International Journal of Remote Sensing, 2019, 40(22): 8342-8358.
doi: 10.1080/01431161.2019.1608392
|
[35] |
陈亚宁, 吾买尔江·吾布力, 艾克热木·阿布拉, 等. 塔里木河下游近20 a输水的生态效益监测分析[J]. 干旱区地理, 2021, 44(3): 605-611.
|
|
[Chen Yaning, Wubuli Wumaierjiang, Abula Aikeremu, et al. Monitoring and analysis of ecological benefits of water conveyance in the lower reaches of Tarim River in recent 20 a[J]. Arid Land Geography, 2021, 44(3): 605-611.]
|
[36] |
张久丹, 李均力, 包安明, 等. 2013—2020年塔里木河流域胡杨林生态恢复成效评估[J]. 干旱区地理, 2022, 45(6): 1824-1835.
|
|
[Zhang Jiudan, Li Junli, Bao Anming, et al. Effectiveness assessment of ecological restoration of Populus euphratica forest in the Tarim River Basin during 2013—2020[J]. Arid Land Geography, 2022, 45(6): 1824-1835.]
|
[37] |
陈永金, 艾克热木·阿布拉, 张天举, 等. 塔里木河下游生态输水对地下水埋深变化的影响[J]. 干旱区地理, 2021, 44(3): 651-658.
|
|
[Chen Yongjin, Abula Aikeremu, Zhang Tianju, et al. Effects of ecological water conveyance on groundwater depth in the lower reaches of Tarim River[J]. Arid Land Geography, 2021, 44(3): 651-658.]
|
[38] |
王振, 李均力, 张久丹, 等. 输水漫溢对塔里木河中游胡杨林恢复的影响[J]. 干旱区地理, 2023, 46(1): 94-102.
|
|
[Wang Zhen, Li Junli, Zhang Jiudan, et al. Influences of ecological water conveyance on Populus euphratica forest restoration in the middle reaches of Tarim River[J]. Arid Land Geography, 2023, 46(1): 94-102.]
|
[39] |
张静静, 郝海超, 郝兴明, 等. 塔里木河下游生态输水对天然植被NPP的影响[J]. 干旱区地理, 2021, 44(3): 708-717.
|
|
[Zhang Jingjing, Hao Haichao, Hao Xingming, et al. Effects of ecological water conveyance on NPP of natural vegetation in the lower reaches of Tarim River[J]. Arid Land Geography, 2021, 44(3): 708-717.]
|