收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2023, Vol. 46 ›› Issue (7): 1084-1097.doi: 10.12118/j.issn.1000-6060.2022.525

• 气候与水文 • 上一篇    下一篇

青海湖流域地表温度时空变化特征研究

康利刚1,2(),曹生奎1,2,3(),曹广超1,2,3,严莉1,2,陈链璇1,2,李文斌1,2,赵浩然1,2   

  1. 1.青海师范大学地理科学学院青海省自然地理与环境过程重点实验室,青海 西宁 810008
    2.青海师范大学青藏高原地表过程与生态保育教育部重点实验室,青海 西宁 810008
    3.青海省人民政府-北京师范大学高原科学与可持续发展研究院,青海 西宁 810008
  • 收稿日期:2022-10-15 修回日期:2023-01-03 出版日期:2023-07-25 发布日期:2023-08-03
  • 通讯作者: 曹生奎(1979-),男,博士,教授,主要从事生态水文与水资源学方面的研究. E-mail: caoshengkui@163.com
  • 作者简介:康利刚(1998-),男,硕士研究生,主要从事生态水文与水资源学方面的研究. E-mail: 2369564480@qq.com
  • 基金资助:
    国家自然科学基金项目(42061008)

Spatiotemporal variation of land surface temperature in Qinghai Lake Basin

KANG Ligang1,2(),CAO Shengkui1,2,3(),CAO Guangchao1,2,3,YAN Li1,2,CHEN Lianxuan1,2,LI Wenbin1,2,ZHAO Haoran1,2   

  1. 1. Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, Qinghai, China
    2. Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education), Qinghai Normal University, Xining 810008, Qinghai, China
    3. Qinghai Provincial People’s Government-Institute of Plateau Science and Sustainable Development, Beijing Normal University, Xining 810008, Qinghai, China
  • Received:2022-10-15 Revised:2023-01-03 Online:2023-07-25 Published:2023-08-03

摘要:

地表温度是陆面过程研究的重要参数之一。基于MOD11A2地表温度数据,结合数字高程模型(DEM)、土地利用类型、气象和归一化植被指数(NDVI)等数据,采用ArcGIS空间分析与数理统计方法,对2002—2021年青海湖流域的年度、季节、月份及昼夜等时间尺度,以及不同土地利用类型、不同海拔高度的地表温度变化特征进行了分析,并利用地理探测器模型对地表温度与环境因子之间的关系进行了研究。结果表明:(1)青海湖流域年均地表温度总体随年份增加呈现上升趋势,平均地表温度为2.20 ℃。空间分布呈现比较规律的由流域东南向西北逐渐下降的特征。青海湖北岸和东岸地表温度上升趋势最显著,呈上升趋势的区域占流域主体。(2)地表温度在不同季节表现为:夏季>春季>秋季>冬季。除春季随年份增加呈下降趋势外,夏季、秋季、冬季均呈逐年上升趋势。(3)月间地表温度表现为规律的先增加后减小,以7月为“对称轴”呈显著相似的变化趋势。(4)不同土地利用类型的地表温度从高到低排序为:耕地>林地>灌木>草地>荒地>冰川。(5)年均地表温度与海拔为显著负相关关系(P<0.05),海拔每升高100 m,年均地表温度下降约0.8 ℃。(6)根据单因子探测结果,环境因子对地表温度的解释力存在差异,其中海拔高度和年均气温对地表温度的解释力较高,而土地利用类型对其解释力最低。在所有因子的交互作用中,年均气温和海拔高度交互,q值的解释力最大(0.90),表明年均气温和海拔高度的耦合与青海湖流域地表温度关系密切。

关键词: 青海湖流域, 地表温度, 时空变化, 地理探测器, 环境因子

Abstract:

The land surface temperature considerably influences land surface processes. Based on MOD11A2 land surface temperature data, the annual, seasonal, monthly, and diurnal land surface temperature changes in the Qinghai Lake Basin of China during 2002—2021 were analyzed using the digital elevation model, land use type, meteorology and normalized difference vegetation index, ArcGIS spatial analysis, and mathematical statistics. The results revealed that: (1) The average annual land surface temperature of the Qinghai Lake Basin increased over the years, and the average land surface temperature was 2.20 ℃. The spatial distribution exhibited a regular characteristic of gradually decreasing from the southeast to the northwest of the basin. The north and east shores of Qinghai Lake exhibited the most significant increasing trend of the land surface temperature, and the area with increasing trend accounted for the main part of the basin. (2) The land surface temperature values in various seasons were in the sequence summer>spring>autumn>winter. With the exception of spring, in which a decreasing trend was observed over the year, an increasing trend was observed annually for summer, autumn, and winter. (3) The land surface temperature between months exhibited a regular increase and subsequent decrease, with July as the “symmetry axis” showing a significantly similar trend. (4) The land surface temperatures of various land use types from high to low followed the order arable land>forest land>shrubs>grassland>wasteland>glacier. (5) The annual average land surface temperature was significantly negatively correlated with elevation (P<0.05), and the annual average land surface temperature decreased by approximately 0.8 ℃ for every 100 m increase in the elevation. (6) Single-factor detection results revealed differences in the explanatory power of environmental factors on the land surface temperature. Among these factors, altitude and the mean annual temperature exhibited high explanatory power on the land surface temperature, whereas the land use type exhibited the lowest explanatory power. Among the interactions of all factors, the annual mean temperature and altitude interacted with the highest explanatory power of q value (0.90). This result indicated that the coupling of the annual mean temperature and altitude was closely related to the land surface temperature of Qinghai Lake Basin.

Key words: Qinghai Lake Basin, land surface temperature, spatiotemporal variation, geographic detector, environmental factors