[1] |
张祎. 长江流域土地利用/覆被变化对地表温度的影响[D]. 武汉: 中国地质大学, 2018.
|
|
[Zhang Yi. The influence of LUCC on the land surface temperature in Yangtze River Basin[D]. Wuhan: China University of Geosciences, 2018.]
|
[2] |
刘俊杰, 潘自武, 秦奋, 等. 基于MODIS的秦巴山地气温估算与山体效应分析[J]. 地理研究, 2020, 39(3): 735-748.
doi: 10.11821/dlyj020190164
|
|
[Liu Junjie, Pan Ziwu, Qin Fen, et al. Estimation of air temperature based on MODIS and analysis of mass elevation effect in the Qinling-Daba Mountains[J]. Geographical Research, 2020, 39(3): 735-748.]
doi: 10.11821/dlyj020190164
|
[3] |
安彬, 肖薇薇, 张淑兰, 等. 1960—2017年黄土高原地表温度时空变化特征[J]. 干旱区地理, 2021, 44(3): 778-785.
|
|
[An Bin, Xiao Weiwei, Zhang Shulan, et al. Spatial and temporal characteristics of surface temperature in the Loess Plateau during 1960—2017[J]. Arid Land Geography, 2021, 44(3): 778-785.]
|
[4] |
Delnat V, Verborgt J, Janssens L, et al. Daily temperature variation lowers the lethal and sublethal impact of a pesticide pulse due to a higher degradation rate[J]. Chemosphere, 2021, 263: 128114, doi: 10.1016/j.chemosphere.2020.128114.
doi: 10.1016/j.chemosphere.2020.128114
|
[5] |
IPCC. Summary for policy makers of the synthesis report of the IPCC fifth assessment report[M]. Cambridge: Cambridge University Press, 2013.
|
[6] |
Ethan H, Kirsten M B, Braden C O, et al. Evaluation of the MODIS collections 5 and 6 for change analysis of vegetation and land surface temperature dynamics in north and south America[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 156: 121-134.
doi: 10.1016/j.isprsjprs.2019.07.011
|
[7] |
姬霖, 段克勤. 1960—2017年渭河流域极端气温变化及其对区域增暖的响应[J]. 地理科学, 2020, 40(3): 466-477.
doi: 10.13249/j.cnki.sgs.2020.03.015
|
|
[Ji Lin, Duan Keqin. Variations of extreme temperature and its response on regional warming in the Weihe River Basin during 1960—2017[J]. Scientia Geographica Sinica, 2020, 40(3): 466-477.]
doi: 10.13249/j.cnki.sgs.2020.03.015
|
[8] |
丁一汇, 王会军. 近百年中国气候变化科学问题的新认识[J]. 科学通报, 2016, 61(10): 1029-1041.
|
|
[Ding Yihui, Wang Huijun. Newly acquired knowledge on the scientific issues related to climate change over the recent 100 years in China[J]. Chinese Science Bulletin, 2016, 61(10): 1029-1041.]
|
[9] |
热伊莱·卡得尔, 玉苏甫·买买提, 玉素甫江·如素力, 等. 伊犁河谷2001—2014年地表温度时空分异特征[J]. 中国沙漠, 2018, 38(3): 637-644.
doi: 10.7522/j.issn.1000-694X.2017.00012
|
|
[Kadeer Reyilai, Maimaiti Yusufu, Rusuli Yusufujiang, et al. Temporal and spatial differentiation characteristics of surface temperature in Yili Valley from 2001 to 2014[J]. Journal of Desert Research, 2018, 38(3): 637-644.]
doi: 10.7522/j.issn.1000-694X.2017.00012
|
[10] |
张威, 纪然. 辽宁省地表温度时空变化及影响因素[J]. 生态学报, 2019, 39(18): 6772-6784.
|
|
[Zhang Wei, Ji Ran. Analysis of spatiotemporal variation and factors influencing surface temperature in Liaoning Province[J]. Acta Ecologica Sinica, 2019, 39(18): 6772-6784.]
|
[11] |
叶钰, 秦建新, 胡顺石. 长沙市热岛效应时空特征变化研究[J]. 地球信息科学学报, 2017, 19(4): 518-527.
doi: 10.3724/SP.J.1047.2017.00518
|
|
[Ye Yu, Qin Jianxin, Hu Shunshi. Spatial-temporal evolution of urban heat island effects in Changsha City[J]. Journal of Geo-information Science, 2017, 19(4): 518-527.]
doi: 10.3724/SP.J.1047.2017.00518
|
[12] |
刘劲宏, 姚宜斌, 桑吉章. PM2.5对地表温度的影响及其应用[J]. 大地测量与地球动力学, 2019, 39(5): 502-505.
|
|
[Liu Jinhong, Yao Yibin, Sang Jizhang. Influence of PM2.5concentrations on surface temperature and its application[J]. Journal of Geodesy and Geodynamics, 2019, 39(5): 502-505.]
|
[13] |
王万同, 王卷乐, 杜佳. 基于ETM+与MODIS数据融合的伊洛河流域地表蒸散估算[J]. 地理研究, 2013, 32(5): 817-827.
|
|
[Wang Wantong, Wang Juanle, Du Jia. Land surface evapotranspiration estimation of Yiluo River Basin based on fusion of ETM+ and MODIS data[J]. Geographical Research, 2013, 32(5): 817-827.]
|
[14] |
刘宝康. 气候变化背景下青海湖流域草地与湖泊时空变化特征研究[D]. 兰州: 兰州大学, 2016.
|
|
[Liu Baokang. Spatial and temporal variation characteristics of grassland and lake in Qinghai Lake Basin under climate change[D]. Lanzhou: Lanzhou University, 2016.]
|
[15] |
李广泳, 姜翠红, 程滔, 等. 青海湖流域植被物候格局时空动态变化及其与植被退化的关系[J]. 草业学报, 2016, 25(1): 22-32.
doi: 10.11686/cyxb2015210
|
|
[Li Guangyong, Jiang Cuihong, Cheng Tao, et al. Spatial-temporal variation of vegetation phenology and their relationships with vegetation degradation in a Qinghai Lake watershed[J]. Acta Prataculturae Sinica, 2016, 25(1): 22-32.]
doi: 10.11686/cyxb2015210
|
[16] |
赵美亮, 曹广超, 曹生奎, 等. 1980—2017年青海省地表温度时空变化特征[J]. 干旱区研究, 2021, 38(1): 178-187.
|
|
[Zhao Meiliang, Cao Guangchao, Cao Shengkui, et al. Spatial-temporal variation characteristics of land surface temperature in Qinghai Province from 1980 to 2017[J]. Arid Zone Research, 2021, 38(1): 178-187.]
|
[17] |
韩有香, 刘金青. 1963—2016年久治地区日照时数变化特征分析[J]. 现代农业科技, 2017(21): 233-236.
|
|
[Han Youxiang, Liu Jinqing. Analysis on the change characteristics of sunshine hours in Jiuzhi from 1963 to 2016[J]. Modern Agricultural Science and Technology, 2017(21): 233-236.]
|
[18] |
杨羽帆, 曹生奎, 冯起, 等. 青海湖沙柳河流域浅层地下水氢氧稳定同位素分布特征[J]. 中国沙漠, 2019, 39(5): 45-53.
doi: 10.7522/j.issn.1000-694X.2018.00101
|
|
[Yang Yufan, Cao Shengkui, Feng Qi, et al. Spatial distribution characteristics of composition of stable hydrogen and oxygen isotopes of shallow groundwater in Shaliu River Basin of Qinghai Lake[J]. Journal of Desert Research, 2019, 39(5): 45-53.]
doi: 10.7522/j.issn.1000-694X.2018.00101
|
[19] |
曹生奎, 曹广超, 陈克龙, 等. 青海湖高寒湿地生态系统服务价值动态[J]. 中国沙漠, 2014, 34(5): 1402-1409.
doi: 10.7522/j.issn.1000-694X.2013.00441
|
|
[Cao Shengkui, Cao Guangchao, Chen Kelong, et al. Dynamics of service value of alpine wetland ecosystem in Qinghai Lake[J]. Journal of Desert Research, 2014, 34(5): 1402-1409.]
doi: 10.7522/j.issn.1000-694X.2013.00441
|
[20] |
李惠梅, 张安录, 高泽兵, 等. 青海湖地区生态系统服务价值变化分析[J]. 地理科学进展, 2012, 31(12): 1747-1754.
doi: 10.11820/dlkxjz.2012.12.022
|
|
[Li Huimei, Zhang Anlu, Gao Zebing, et al. Quantitative analysis of the impacts of climate and socio-economic driving factors of land use change on the ecosystem services value in the Qinghai Lake area[J]. Progress in Geography, 2012, 31(12): 1747-1754.]
doi: 10.11820/dlkxjz.2012.12.022
|
[21] |
潘虹, 顾海敏, 史建桥, 等. 基于RS和GIS的青海湖流域植被覆盖度变化与驱动因子研究[J]. 资源开发与市场, 2016, 32(7): 827-831.
|
|
[Pan Hong, Gu Haimin, Shi Jianqiao, et al. Study on changes of vegetation fraction and lts driving factors in Qinghai Lake Basin based on RS and GIS[J]. Resource Development & Market, 2016, 32(7): 827-831.]
|
[22] |
苏芬, 刘宝康, 张翠花, 等. 青海湖流域牧草物候期对气候变化的响应[J]. 青海草业, 2018, 27(4): 12-18.
|
|
[Su Fen, Liu Baokang, Zhang Cuihua, et al. Response of pasture phenological period to climate change in Qinghai Lake Basin[J]. Qinghai Prataculture, 2018, 27(4): 12-18.]
|
[23] |
肖雄, 李小雁, 吴华武, 等. 青海湖流域高寒草甸壤中流水分来源研究[J]. 水土保持学报, 2016, 30(2): 230-236.
|
|
[Xiao Xiong, Li Xiaoyan, Wu Huawu, et al. Study on the water sources of subsurface flow in alpine meadow of the Qinghai Lake Basin[J]. Journal of Soil and Water Conservation, 2016, 30(2): 230-236.]
|
[24] |
王志刚, 曹生奎, 曹广超. 近15年来青海湖流域气温、降水变化对植被物候驱动分析[J]. 水土保持研究, 2022, 29(1): 249-255.
|
|
[Wang Zhigang, Cao Shengkui, Cao Guangchao. Analysis on the drive of temperature and precipitation changes to vegetation phenology of the Qinghai Lake Basin in the past 15 years[J]. Research of Soil and Water Conservation, 2022, 29(1): 249-255.]
|
[25] |
Zhao W, Duan S B. Reconstruction of daytime land surface temperatures under cloud-covered conditions using integrated MODIS/Terra land products and MSG geostationary satellite data[J]. Remote Sensing of Environment, 2020, 247: 111931, doi: 10.1016/j.rse.2020.111931.
doi: 10.1016/j.rse.2020.111931
|
[26] |
程丹妮, 王颖琪, 程勇翔, 等. 新疆典型沙漠和绿洲植被-水汽-地表温度相关性分析[J]. 干旱区地理, 2022, 45(2): 456-466.
|
|
[Cheng Danni, Wang Yingqi, Cheng Yongxiang, et al. Vegetation-water vapor-land surface temperature correlation analysis of typical deserts and oases in Xinjiang[J]. Arid Land Geocraphy, 2022, 45(2): 456-466.]
|
[27] |
彭璐璐, 李楠, 郑智远, 等. 中国居民消费碳排放影响因素的时空异质性[J]. 中国环境科学, 2021, 41(1): 463-472.
|
|
[Peng Lulu, Li Nan, Zheng Zhiyuan, et al. Spatial-temporal heterogeneity of carbon emissions and influencing factors on household consumption of China[J]. China Environmental Science, 2021, 41(1): 463-472.]
|
[28] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010
|
|
[Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.]
doi: 10.11821/dlxb201701010
|
[29] |
李佳洺, 陆大道, 徐成东, 等. 胡焕庸线两侧人口的空间分异性及其变化[J]. 地理学报, 2017, 72(1): 148-160.
doi: 10.11821/dlxb201701012
|
|
[Li Jiaming, Lu Dadao, Xu Chengdong, et al. Spatial heterogeneity and its changes of population on the two sides of Hu Line[J]. Acta Geographica Sinica, 2017, 72(1): 148-160.]
doi: 10.11821/dlxb201701012
|
[30] |
吕晨, 蓝修婷, 孙威. 地理探测器方法下北京市人口空间格局变化与自然因素的关系研究[J]. 自然资源学报, 2017, 32(8): 1385-1397.
doi: 10.11849/zrzyxb.20160707
|
|
[Lü Chen, Lan Xiuting, Sun Wei. A study on the relationship between natural factors and population distribution in Beijing using geographical detector[J]. Journal of Natural Resources, 2017, 32(8): 1385-1397.]
doi: 10.11849/zrzyxb.20160707
|
[31] |
王少剑, 王洋, 蔺雪芹, 等. 中国县域住宅价格的空间差异特征与影响机制[J]. 地理学报, 2016, 71(8): 1329-1342.
doi: 10.11821/dlxb201608004
|
|
[Wang Shaojian, Wang Yang, Lin Xueqin, et al. Spatial differentiation patterns and influencing mechanism of housing prices in China: Based on data of 2872 counties[J]. Acta Geographica Sinica, 2016, 71(8): 1329-1342.]
doi: 10.11821/dlxb201608004
|
[32] |
Li Q X, Sun W B, Huang B Y, et al. Consistency of global warming trends strengthened since 1880s[J]. Science Bulletin, 2020, 65(20): 1709-1712.
doi: 10.1016/j.scib.2020.06.009
pmid: 36659242
|
[33] |
杨涵洧, 封国林. 2013年盛夏中国持续性高温事件诊断分析[J]. 高原气象, 2016, 35(2): 484-494.
doi: 10.7522/j.issn.1000-0534.2014.00130
|
|
[Yang Hanwei, Feng Guolin. Diagnostic analyses of characteristics and causes of regional and persistent high temperature event in China[J]. Plateau Meteorology, 2016, 35(2): 484-494.]
doi: 10.7522/j.issn.1000-0534.2014.00130
|
[34] |
张百平, 姚永慧. 山体效应对生态垂直格局的影响[J]. 地理学报, 2016, 26(7): 871-877.
|
|
[Zhang Baiping, Yao Yonghui. Implications of mass elevation effect for the altitudinal patterns of global ecology[J]. Acta Geographica Sinica, 2016, 26(7): 871-877.]
|
[35] |
朱伊, 范广洲, 华维, 等. 1981—2015年青藏高原地表温度的时空变化特征分析[J]. 西南大学学报(自然科学版), 2018, 40(11): 127-140.
|
|
[Zhu Yi, Fan Guangzhou, Hua Wei, et al. Analysis of the temporal and spatial variation in land surface temperature over the Qinghai-Tibet Plateau from 1981 to 2015[J]. Journal of Southwest University (Natural Science Edition), 2018, 40(11): 127-140.]
|
[36] |
胡盼盼. 基于MODIS数据的青藏高原2003—2020年地表温度时空变化分析[D]. 北京: 中国地质大学, 2021.
|
|
[Hu Panpan. Analyzing the spatiotemporal variations of the land surface temperature on the Tibetan Plateau from 2003—2020 based on MODIS data[D]. Beijing: China University of Geosciences, 2021.]
|
[37] |
姚宜斌, 雷祥旭, 张良, 等. 青藏高原地区 1979—2014 年大气可降水量和地表温度时空变化特征分析[J]. 科学通报, 2016, 61(13): 1462-1477.
|
|
[Yao Yibin, Lei Xiangxu, Zhang Liang, et al. Analysis of precipitable water vapor and surface temperature variation over Qinghai-Tibetan Plateau from 1979 to 2014[J]. Chinese Science Bulletin, 2016, 61(13): 1462-1477.]
|