干旱区地理 ›› 2022, Vol. 45 ›› Issue (5): 1534-1546.doi: 10.12118/j.issn.1000-6060.2022.015 cstr: 32274.14.ALG2022015
赵爽1,2,3(),丁建丽1,2,3(
),韩礼敬1,2,3,黄帅4,葛翔宇1,2,3
收稿日期:
2022-01-10
修回日期:
2022-03-13
出版日期:
2022-09-25
发布日期:
2022-10-20
作者简介:
赵爽(1997-),女,硕士研究生,主要从事干旱区遥感与GIS应用研究. E-mail: 基金资助:
ZHAO Shuang1,2,3(),DING Jianli1,2,3(
),HAN Lijing1,2,3,HUANG Shuai4,GE Xiangyu1,2,3
Received:
2022-01-10
Revised:
2022-03-13
Published:
2022-09-25
Online:
2022-10-20
摘要:
土壤盐渍化对区域经济和生态可持续发展产生负面影响。微波介电常数是微波遥感探测土壤的关键因素,然而介电常数与盐分的关系仍不清晰。为分析盐分类型及含盐量对土壤介电常数的影响,在0.3~20.0 GHz频率下,测量了新疆典型的2种盐渍土类型(硫酸盐-氯化物型:
赵爽,丁建丽,韩礼敬,黄帅,葛翔宇. 新疆典型盐渍土微波介电特性响应分析与建模[J]. 干旱区地理, 2022, 45(5): 1534-1546.
ZHAO Shuang,DING Jianli,HAN Lijing,HUANG Shuai,GE Xiangyu. Response analysis and modeling of microwave dielectric properties of typical saline soil in Xinjiang[J]. Arid Land Geography, 2022, 45(5): 1534-1546.
表3
基于RF算法估算土壤盐分的模型结果"
模型 | 介电常数 | 土壤编号 | 建模集 | 验证集 | ||||
---|---|---|---|---|---|---|---|---|
RCal2 | RMSECal | RVal2 | RMSEVal | RPIQ | ||||
RF | | 1号 | 0.91 | 0.18 | 0.65 | 0.31 | 2.09 | |
2号 | 0.90 | 0.22 | 0.53 | 0.38 | 1.70 | |||
3号 | 0.89 | 0.20 | 0.54 | 0.36 | 1.81 | |||
平均值 | 0.90 | 0.20 | 0.57 | 0.35 | 1.87 | |||
| 1号 | 0.89 | 0.18 | 0.70 | 0.31 | 2.08 | ||
2号 | 0.91 | 0.20 | 0.49 | 0.38 | 1.69 | |||
3号 | 0.89 | 0.19 | 0.67 | 0.31 | 2.07 | |||
平均值 | 0.90 | 0.19 | 0.62 | 0.33 | 1.95 | |||
| 1号 | 0.93 | 0.15 | 0.75 | 0.29 | 3.28 | ||
2号 | 0.90 | 0.20 | 0.34 | 0.43 | 1.50 | |||
3号 | 0.93 | 0.19 | 0.50 | 0.38 | 2.52 | |||
平均值 | 0.92 | 0.18 | 0.53 | 0.37 | 2.43 |
[1] |
Lasne Y, Paillou P, Freeman A, et al. Effect of salinity on the dielectric properties of geological materials: Implication for soil moisture detection by means of radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6): 1674-1688.
doi: 10.1109/TGRS.2008.916220 |
[2] | 丁建丽, 姚远, 王飞. 干旱区土壤盐渍化特征空间建模[J]. 生态学报, 2014, 34(16): 4620-4631. |
[Ding Jianli, Yao Yuan, Wang Fei. Detecting soil salinization in arid regions using spectral feature space derived from remote sensing data[J]. Acta Ecologica Sinica, 2014, 34(16): 4620-4631. ] | |
[3] |
Machado R M A, Serralheiro R P. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization[J]. Horticulturae, 2017, 3(2): 30, doi: 10.3390/horticulturae3020030.
doi: 10.3390/horticulturae3020030 |
[4] | 杨劲松. 中国盐渍土研究的发展历程与展望[J]. 土壤学报, 2008, 45(5): 837-845. |
[Yang Jingsong. Development and prospect of the research on salt-affected soils in China[J]. Acta Pedologica Sinica, 2008, 45(5): 837-845. ] | |
[5] | 田长彦, 周宏飞, 刘国庆. 21世纪新疆土壤盐渍化调控与农业持续发展研究建议[J]. 干旱区地理, 2000, 23(2): 177-181. |
[Tian Changyan, Zhou Hongfei, Liu Guoqing. The proposal on control of soil salinizing and agricultural sustaining developing 21th century in Xinjiang[J]. Arid Land Geography, 2000, 23(2): 177-181. ] | |
[6] | 施建成, 杜阳, 杜今阳, 等. 微波遥感地表参数反演进展[J]. 中国科学: 地球科学, 2012, 42(6): 814-842. |
[Shi Jiancheng, Du Yang, Du Jinyang, et al. Progresses on microwave remote sensing of land surface parameters[J]. Scientia Sinica (Terrae), 2012, 42(6): 814-842. ] | |
[7] | 张滢, 丁建丽, 周鹏. 干旱区土壤水分微波遥感反演算法综述[J]. 干旱区地理, 2011, 34(4): 671-678. |
[Zhang Ying, Ding Jianli, Zhou Peng. Model algorithm of soil moisture retrieval base on microwave remote sensing in arid regions[J]. Arid Land Geography, 2011, 34(4): 671-678. ] | |
[8] | 王学, 刘全明, 屈忠义, 等. 盐渍化土壤水分微波雷达反演与验证[J]. 农业工程学报, 2017, 33(11): 108-114. |
[Wang Xue, Liu Quanming, Qu Zhongyi, et al. Inversion and verification of salinity soil moisture using microwave radar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11): 108-114. ] | |
[9] | 陈全, 周忠发, 王玲玉, 等. 基于多时相Sentinel-1 SAR数据的喀斯特石漠化区地表土壤水分反演研究[J]. 红外与毫米波学报, 2020, 39(5): 626-634. |
[Chen Quan, Zhou Zhongfa, Wang Lingyu, et al. Surface soil moisture retrieval using multi-temporal Sentinel-1 SAR data in karst rocky desertification area[J]. Journal of Infrared and Millimeter Waves, 2020, 39(5): 626-634. ] | |
[10] |
Zeng L, Shi Q Y, Guo K, et al. A three-variables cokriging method to estimate bare-surface soil moisture using multi-temporal, VV-polarization synthetic-aperture radar data[J]. Hydrogeology Journal, 2020, 28(6): 2129-2139.
doi: 10.1007/s10040-020-02177-z |
[11] |
Wang J R, Schmugge T J. An empirical model for the complex dielectric permittivity of soils as a function of water content[J]. IEEE Transactions on Geoscience and Remote Sensing, 1980, GE-18(4): 288-295.
doi: 10.1109/TGRS.1980.350304 |
[12] |
Dobson M C, Ulaby F T, Hallikainen M T, et al. Microwave dielectric behavior of wet soil-part II: Dielectric mixing models[J]. IEEE Transactions on Geoscience and Remote Sensing, 1985, GE-23(1): 35-46.
doi: 10.1109/TGRS.1985.289498 |
[13] |
Mironov V L, Kosolapova L G, FominS V. Physically and mineralogically based spectroscopic dielectric model for moist soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 2059-2070.
doi: 10.1109/TGRS.2008.2011631 |
[14] |
Mccoll K A, Ryu D, Matic V, et al. Soil salinity impacts on L-band remote sensing of soil moisture[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 262-266.
doi: 10.1109/LGRS.2011.2165932 |
[15] |
Hoa P V, Giang N V, Binh N A, et al. Soil salinity mapping using SAR sentinel-1 data and advanced machine learning algorithms: A case study at Ben Tre Province of the Mekong River Delta (Vietnam)[J]. Remote Sensing, 2019, 11(2): 128, doi: 10.3390/rs11020128.
doi: 10.3390/rs11020128 |
[16] | 邵芸, 吕远, 董庆, 等. 含水含盐土壤的微波介电特性分析研究[J]. 遥感学报, 2002, 6(6): 416-423. |
[Shao Yun, Lü Yuan, Dong Qing, et al. Study on soil microwave dielectric characteristic as salinity and water content[J]. National Remote Sensing Bulletin, 2002, 6(6): 416-423. ] | |
[17] |
Ding J L, Yang S T, Shi Q, et al. Using apparent electrical conductivity as indicator for investigating potential spatial variation of soil salinity across seven oases along Tarim River in southern Xinjiang, China[J]. Remote Sensing, 2020, 12(16): 2601, doi: 10.3390/rs12162601.
doi: 10.3390/rs12162601 |
[18] |
Zhang F, Tiyip T, Ding J L, et al. Studies on the reflectance spectral features of saline soil along the middle reaches of Tarim River: A case study in Xinjiang Autonomous Region, China[J]. Environmental Earth Sciences, 2013, 69(8): 2743-2761.
doi: 10.1007/s12665-012-2096-y |
[19] |
Han L J, Ding J L, Zhang J Y, et al. Precipitation events determine the spatiotemporal distribution of playa surface salinity in arid regions: Evidence from satellite data fused via the enhanced spatial and temporal adaptive reflectance fusion model[J]. Catena, 2021, 206: 105546, doi: 10.1016/j.catena.2021.105546.
doi: 10.1016/j.catena.2021.105546 |
[20] | 曹肖奕, 丁建丽, 葛翔宇, 等. 基于不同卫星光谱模拟的土壤电导率估算研究[J]. 干旱区地理, 2020, 43(1): 172-181. |
[Cao Xiaoyi, Ding Jianli, Ge Xiangyu, et al. Estimation of soil conductivity based on spectral simulation of different satellites[J]. Arid Land Geography, 2020, 43(1): 172-181. ] | |
[21] | 赵明亮, 李艳红, 王盼盼, 等. 艾比湖湿地湖周典型植物群落下土壤沙化盐化特征研究[J]. 干旱环境监测, 2015, 29(4): 145-151. |
[Zhao Mingliang, Li Yanhong, Wang Panpan, et al. Researching on characteristics of soil salinization and desertification in Ebinur Lake wetland around the lake under the typical plant community[J]. Arid Environmental Monitoring, 2015, 29(4): 145-151. ] | |
[22] | 张瑜斌, 邓爱英, 庄铁诚, 等. 潮间带土壤盐度与电导率的关系[J]. 生态环境, 2003, 12(2): 164-165. |
[Zhang Yubin, Deng Aiying, Zhuang Tiecheng, et al. Relation between soil salinity in intertidal zone and electric conductivity[J]. Ecology and Environment, 2003, 12(2): 164-165. ] | |
[23] | 全国土壤普查办公室. 中国土壤普查技术[M]. 北京: 农业出版社, 1992: 144-145. |
[National Soil Census Office. Soil census technology in China[M]. Beijing: Agriculture Press, 1992: 144-145. ] | |
[24] |
Coşkun M, Polat Ö, Coşkun F M, et al. The electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO3 and LaCr0.90Ir0.10O3 perovskites[J]. RSC Advances, 2018, 8(9): 4634-4648.
doi: 10.1039/C7RA13261A |
[25] | Liaw A, Wiener M. Classification and regression by randomforest[J]. R news, 2002, 2(3): 18-22. |
[26] | 包青岭, 丁建丽, 王敬哲, 等. 基于随机森林算法的土壤有机质含量高光谱检测[J]. 干旱区地理, 2019, 42(6): 1404-1414. |
[Bao Qingling, Ding Jianli, Wang Jingzhe, et al. Hyperspectral detection of soil organic matter content based on Random forest algorithm[J]. Arid Land Geography, 2019, 42(6): 1404-1414. ] | |
[27] |
Menze B H, Kelm B M, Masuch R, et al. A comparison of Random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data[J]. BMC Bioinformatics, 2009, 10: 213, doi: 10.1186/1471-2105-10-213.
doi: 10.1186/1471-2105-10-213 pmid: 19591666 |
[28] |
Bellon-Maurel V, Fernandez-Ahumada E, Palagos B, et al. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy[J]. TrAC Trends in Analytical Chemistry, 2010, 29(9): 1073-1081.
doi: 10.1016/j.trac.2010.05.006 |
[29] | 赵贵章, 徐远志, 乔翠平, 等. 介质含水量与介电常数模型影响因素分析[J]. 工程勘察, 2018, 46(7): 55-61. |
[Zhao Guizhang, Xu Yuanzhi, Qiao Cuiping, et al. Factor analysis on model of relations between water content and dielectric constant[J]. Geotechnical Investigation & Surveying, 2018, 46(7): 55-61. ] | |
[30] | 胡庆荣. 含水含盐土壤介电特性实验研究及对雷达图像的响应分析[D]. 北京: 中国科学院遥感应用研究所, 2003. |
[Hu Qingrong. Studies on microwave dielectric behavior of moist salt soil and its effect on backscattering coefficients extracted from radar image[D]. Beijing: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 2003. ] | |
[31] |
丁艳玲, 刘宝江, 李洋洋. L波段对不同盐类土壤的微波介电特性分析[J]. 地球信息科学学报, 2012, 14(3): 376-381.
doi: 10.3724/SP.J.1047.2012.00376 |
[Ding Yanling, Liu Baojiang, Li Yangyang. Study on microwave dielectric properties of different salt soils at L-band[J]. Journal of Geo-information Science, 2012, 14(3): 376-381. ]
doi: 10.3724/SP.J.1047.2012.00376 |
|
[32] | 李洋洋. 集成光学与微波遥感苏打盐碱地水盐含量反演方法研究[D]. 长春: 中国科学院东北地理与农业生态研究所, 2014. |
[Li Yangyang. The reversal method study to moisture content and salinity of soda saline-alkaline soil by integrating optics and microwave remote sensing[D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2014. ] | |
[33] | 宫燕, 刘宝江, 宋开山. 盐渍土土壤溶液1.43 GHz复介电常数计算模型的构建与检验[J]. 土壤与作物, 2020, 9(1): 83-93. |
[Gong Yan, Liu Baojiang, Song Kaishan. Construction and verification of the complex dielectric constant calculation model in saline soil solution at 1.43 GHz[J]. Soils and Crops, 2020, 9(1): 83-93. ] | |
[34] | Szypłowska A, Lewandowski A, Jones S B, et al. Impact of soil salinity, texture and measurement frequency on the relations between soil moisture and 20 MHz-3 GHz dielectric permittivity spectrum for soils of medium texture[J]. Journal of Hydrology, 2019, 579: 124-155. |
[35] | 熊文成, 邵芸. 氯化钠盐土壤介电虚部特性的初步研究[J]. 遥感学报, 2006, 2: 279-286. |
[Xiong Wencheng, Shao Yun. Model for imaginary part of dielectric constant of NaCl soil[J]. National Remote Sensing Bulletin, 2006, 2: 279-286. ] | |
[36] | 潘金梅, 张立新, 吴浩然, 等. 土壤有机物质对土壤介电常数的影响[J]. 遥感学报, 2012, 16(1): 1-24. |
[Pan Jinmei, Zhang Lixin, Wu Haoran, et al. Effect of soil organic substance on soil dielectric constant[J]. National Remote Sensing Bulletin, 2012, 16(1): 1-24. ] | |
[37] | 许景辉, 赵钟声, 王一琛, 等. 基于双线性理论的土壤介电测量研究[J]. 农业机械学报, 2019, 50(12): 322-331. |
[Xu Jinghui, Zhao Zhongsheng, Wang Yichen, et al. Soil dielectric measurement based on bilinear theory[J]. Transactions of the Chinese Society of Agricultural Machinery, 2019, 50(12): 322-331. ] | |
[38] |
Hallikainen M T, Ulaby F T, Dobson M C, et al. Microwave dielectric behavior of wet soil part 1: Empirical models and experimental observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 1985, GE-23(1): 25-34.
doi: 10.1109/TGRS.1985.289497 |
[39] |
Wu Y R, Wang W Z, Zhao S J, et al. Dielectric properties of saline soils and an improved dielectric model in C-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 440-452.
doi: 10.1109/TGRS.2014.2323424 |
[40] |
Mavrovic A, Pardo Lara R, Berg A, et al. Soil dielectric characterization during freeze-thaw transitions using L-band coaxial and soil moisture probes[J]. Hydrology and Earth System Sciences, 2021, 25(3): 1117-1131.
doi: 10.5194/hess-25-1117-2021 |
[1] | 蒙慧敏, 占车生, 胡实, 林忠辉. 大型灌区土壤水盐运移模拟研究进展[J]. 干旱区地理, 2024, 47(9): 1566-1576. |
[2] | 谢俊博, 王兴鹏, 何帅, 刘洋, 忠智博, 李妍, 洪国军. 基于光谱指数建模的沙井子灌区土壤盐分反演[J]. 干旱区地理, 2024, 47(7): 1199-1209. |
[3] | 刘瑞亮, 贾科利, 李小雨, 陈睿华, 王怡婧, 张俊华. 组合光学和微波遥感的耕地土壤含盐量反演[J]. 干旱区地理, 2024, 47(3): 433-444. |
[4] | 石聪, 陈礼瀚, 张怡菲, 何帅, 谢海霞. 新疆小海子灌区耕地土壤盐渍化特征研究[J]. 干旱区地理, 2023, 46(8): 1314-1323. |
[5] | 李科, 丁建丽, 韩礼敬, 葛翔宇, 顾永昇, 周倩, 吕阳霞. 基于PlanetScope影像的典型绿洲土壤盐渍化数字制图[J]. 干旱区地理, 2023, 46(8): 1291-1302. |
[6] | 蒋磊, 刘小龙, 郭帅, 何亮, 邢建磊, 郭俊杰. 基于Logistic回归分析的土壤盐渍化易发性评价——以新疆南疆塔里木灌区为例[J]. 干旱区地理, 2023, 46(11): 1858-1867. |
[7] | 崔锦涛, 买买提·沙吾提. 基于特征波段选择和机器学习的陆地棉叶片水分估算[J]. 干旱区地理, 2023, 46(11): 1836-1847. |
[8] | 魏慧敏, 贾科利, 张旭, 张俊华. 基于机器学习和多光谱遥感的银川平原土壤盐分预测[J]. 干旱区地理, 2023, 46(1): 103-114. |
[9] | 代云豪,管瑶,张钦凯,孙峻杰,贺兴宏. 阿拉尔垦区土壤盐渍化遥感监测及时空特征分析[J]. 干旱区地理, 2022, 45(4): 1176-1185. |
[10] | 刘旭辉,白云岗,柴仲平,张江辉,丁邦新,江柱. 基于多光谱遥感的典型绿洲棉田春季土壤盐分反演及验证[J]. 干旱区地理, 2022, 45(4): 1165-1175. |
[11] | 赵巧珍,丁建丽,韩礼敬,金晓叶,郝建平. MODIS和Landsat时空融合影像在土壤盐渍化监测中的适用性研究——以渭干河—库车河三角洲绿洲为例[J]. 干旱区地理, 2022, 45(4): 1155-1164. |
[12] | 尹瀚民,古丽·加帕尔,于涛,Jeanine UMUHOZA,李旭. 哈萨克斯坦北部小麦遥感估产方法研究[J]. 干旱区地理, 2022, 45(2): 488-498. |
[13] | 胡贵贵,杨粉莉,杨联安,郑玉蓉,王辉,陈卫军,李亚丽. 基于主成分和机器学习的土壤有机质含量空间预测建模[J]. 干旱区地理, 2021, 44(4): 1114-1124. |
[14] | 李慧融. 基于反射率和亮度温度的锡林郭勒积雪深度估算[J]. 干旱区地理, 2020, 43(6): 1567-1572. |
[15] | 王爽, 丁建丽, 王璐, 牛增懿. 基于地表光谱建模的区域土壤盐渍化遥感监测研究[J]. 干旱区地理, 2016, 39(1): 190-198. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 86
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 367
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|