[1] |
吴亚坤, 刘广明, 苏里坦, 等. 多源数据的区域土壤盐渍化精确评估[J]. 光谱学与光谱分析, 2018, 38(11): 3528-3533.
|
|
[ Wu Yakun, Liu Guangming, Su Litan, et al. Accurate evaluation of regional soil salinization using multi-source data[J]. Spectroscopy and Spectral Analysis, 2018, 38(11): 3528-3533. ]
|
[2] |
Han L J, Ding J L, Zhang J Y, et al. Precipitation events determine the spatiotemporal distribution of playa surface salinity in arid regions: Evidence from satellite data fused via the enhanced spatial and temporal adaptive reflectance fusion model[J]. Catena, 2021, 206: 105546, doi: 10.1016/J.CATENA.2021.105546.
doi: 10.1016/J.CATENA.2021.105546
|
[3] |
Zhu X L, Chen J, Gao F, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sensing of Environment, 2010, 114(11): 2610-2623.
doi: 10.1016/j.rse.2010.05.032
|
[4] |
黄波. 时空遥感影像融合研究的进展与趋势[J]. 四川师范大学学报(自然科学版), 2020, 43(4): 427-434, 424.
|
|
[ Huang Bo. Research progress and trend of spatial and temporal remote sensing image fusion[J]. Journal of Sichuan Normal University (Natural Science Edition), 2020, 43(4): 427-434, 424. ]
|
[5] |
Hilker T, Wulder M A, Coops N C, et al. A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS[J]. Remote Sensing of Environment, 2009, 113(8): 1613-1627.
doi: 10.1016/j.rse.2009.03.007
|
[6] |
Zhao Y Q, Huang B, Song H H. A robust adaptive spatial and temporal image fusion model for complex land surface changes[J]. Remote Sensing of Environment, 2018, 208: 42-62.
doi: 10.1016/j.rse.2018.02.009
|
[7] |
Meng L H, Liu H J, Ustin S L, et al. Assessment of FSDAF accuracy on cotton yield estimation using different MODIS products and landsat based on the mixed degree index with different surroundings[J]. Sensors (Basel, Switzerland), 2021, 21(15): 5184, doi: 10.3390/S21155184.
doi: 10.3390/S21155184
|
[8] |
马倩倩, 董博, 许旺旺, 等. 干旱区耕地质量等级评价及土壤养分与盐渍化的分析研究--以民勤绿洲为例[J]. 干旱区地理, 2021, 44(2): 514-524.
|
|
[ Ma Qianqian, Dong Bo, Xu Wangwang, et al. Evaluation of cultivated land quality and analysis of soil nutrients and in arid areas: Taking Minqin Oasis as an example[J]. Arid Land Geography, 2021, 44(2): 514-524. ]
|
[9] |
柳菲, 陈沛源, 于海超, 等. 民勤绿洲不同土地利用类型下土壤水盐的空间分布特征分析[J]. 干旱区地理, 2020, 43(2): 406-414.
|
|
[ Liu Fei, Chen Peiyuan, Yu Haichao, et al. Spatial distribution characteristics of soil water and salt under different land use types in Minqin Oasis[J]. Arid Land Geography, 2020, 43(2): 406-414. ]
|
[10] |
张晓川, 王杰. 基于遥感时空融合的升金湖湿地生态水文结构分析[J]. 遥感技术与应用, 2020, 35(5): 1109-1117.
|
|
[ Zhang Xiaochuan, Wang Jie. The analysis of eco-hydrological structure of Shengjin Lake Wetland based on spatial and temporal fusion technology of remote sensing[J]. Remote Sensing Technology and Application, 2020, 35(5): 1109-1117. ]
|
[11] |
李超, 李雪梅, 田亚林, 等. 温度植被干旱指数时空融合模型对比[J]. 遥感技术与应用, 2020, 35(4): 832-844.
|
|
[ Li Chao, Li Xuemei, Tian Yalin, et al. Time and space fusion model comparison of temperature vegetation drought index[J]. Remote Sensing Technology and Application, 2020, 35(4): 832-844. ]
|
[12] |
石晨烈, 王旭红, 张萌. 3种时空融合算法在洪水监测中的适用性研究[J]. 国土资源遥感, 2020, 32(2): 111-119.
|
|
[ Shi Chenlie, Wang Xuhong, Zhang Meng. Analysis of the applicability of three remote sensing spatiotemporal fusion algorithms in flood monitoring[J]. Remote Sensing for Land and Resources, 2020, 32(2): 111-119. ]
|
[13] |
王爽, 王承武, 张飞云. 基于FSDAF模型的干旱区典型绿洲城市夏季地表热岛效应时空演变研究[J]. 干旱区地理, 2021, 44(1): 118-130.
|
|
[ Wang Shuang, Wang Chengwu, Zhang Feiyun. Spatiotemporal variations of the summer daytime surface urban heat island of oasis city in arid area based on FSDAF model[J]. Arid Land Geography, 2021, 44(1): 118-130. ]
|
[14] |
何珍珍, 王宏卫, 杨胜天, 等. 渭干河-库车河绿洲景观生态安全时空分异及格局优化[J]. 生态学报, 2019, 39(15): 5473-5482.
|
|
[ He Zhenzhen, Wang Hongwei, Yang Shengtian, et al. Spatial-temporal differentiation and pattern optimization of land scape ecological security in the Ugan-Kuqa River oasis[J]. Acta Ecologica Sinica, 2019, 39(15): 5473-5482. ]
|
[15] |
马国林, 丁建丽, 韩礼敬, 等. 基于变量优选与机器学习的干旱区湿地土壤盐渍化数字制图[J]. 农业工程学报, 2020, 36(19): 124-131.
|
|
[ Ma Guolin, Ding Jianli, Han Lijing, et al. Digital mapping of soil salinization in arid area wetland based on variable optimized selection and machine learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(19): 124-131. ]
|
[16] |
Lobell D B, Lesch S M, Corwin D L, et al. Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI[J]. Journal of Environmental Quality, 2010, 39(1): 35-41.
doi: 10.2134/jeq2009.0140
pmid: 20048292
|
[17] |
郑裕东, 徐云成, 严海军, 等. 基于近地遥感系统的小麦玉米冠层RVI和NDVI获取影响因素分析[J]. 光谱学与光谱分析, 2021, 41(8): 2578-2585.
|
|
[ Zheng Yudong, Xu Yuncheng, Yan Haijun, et al. Analysis of influencing factors in wheat/maize canopy RVI and NDVI acquisition using ground-based remote sensing system[J]. Spectroscopy and Spectral Analysis, 2021, 41(8): 2578-2585. ]
|
[18] |
魏阳, 丁建丽, 王飞. 基于Landsat OLI的绿洲灌区土壤盐度最优预测尺度分析[J]. 中国农业科学, 2017, 50(15): 2969-2982.
|
|
[ Wei Yang, Ding Jianli, Wang Fei. Optimal scale analysis of soil salinity prediction in oasis irrigated area of arid land based on Landsat OLI[J]. Scientia Agricultura Sinica, 2017, 50(15): 2969-2982. ]
|
[19] |
王飞, 丁建丽, 魏阳, 等. 基于Landsat系列数据的盐分指数和植被指数对土壤盐度变异性的响应分析--以新疆天山南北典型绿洲为例[J]. 生态学报, 2017, 37(15): 5007-5022.
|
|
[ Wang Fei, Ding Jianli, Wei Yang, et al. Sensitivity analysis of soil salinity and vegetation indices to detect soil salinity variation by using Landsat series images: Applications in different oases in Xinjiang, China[J]. Acta Ecologica Sinica, 2017, 37(15): 5007-5022. ]
|
[20] |
陈红艳, 赵庚星, 陈敬春, 等. 基于改进植被指数的黄河口区盐渍土盐分遥感反演[J]. 农业工程学报, 2015, 31(5): 107-114.
|
|
[ Chen Hongyan, Zhao Gengxing, Cheng Jingchun, et al. Remote sensing inversion of saline soil salinity based on modified vegetation index in estuary area of Yellow River[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5): 107-114. ]
|
[21] |
冯娟, 丁建丽, 杨爱霞, 等. 干旱区土壤盐渍化信息遥感建模[J]. 干旱地区农业研究, 2018, 36(1): 266-273.
|
|
[ Fen Juan, Ding Jianli, Yang Aixia, et al. Remote sensing modeling of soil salinization information in arid areas[J]. Agricultural Research in the Arid Areas, 2018, 36(1): 266-273. ]
|
[22] |
樊彦国, 张维康, 刘敬一. 基于植被指数-盐分指数特征空间的黄河三角洲盐渍化遥感监测研究[J]. 山东农业科学, 2016, 48(5): 137-141.
|
|
[ Fan Yanguo, Zhang Weikang, Liu Jingyi. Remote sensing monitoring model of soil salinization in the Yellow River Delta Zone based on vegetation index-salt index feature space[J]. Shandong Agricultural Sciences, 2016, 48(5): 137-141. ]
|
[23] |
曹雷, 丁建丽, 玉米提·哈力克, 等. 基于国产高分一号卫星数据的区域土壤盐渍化信息提取与建模[J]. 土壤学报, 2016, 53(6): 1399-1409.
|
|
[ Cao Lei, Ding Jianli, Halik Umut, et al. Extraction and modeling of regional soil salinization based on data from GF-1 satellite[J]. Acta Pedologica Sinica, 2016, 53(6): 1399-1409. ]
|
[24] |
Kamh G M E, Ismael B, Oguchi C T. Pore size distribution and wall side orientation controlling salt susceptibility index “SSI” and weathering rate of stratified pharaonic rock art[J]. Restoration of Buildings and Monuments, 2013, 19(5): 341-362.
doi: 10.1515/rbm-2013-6617
|
[25] |
Sahana M, Rehman S, Patel P P, et al. Assessing the degree of soil salinity in the Indian Sundarban Biosphere Reserve using measured soil electrical conductivity and remote sensing data-derived salinity indices[J]. Arabian Journal of Geosciences, 2020, 13(24): 1289, doi: 10.1007/S12517-020-06310-W.
doi: 10.1007/S12517-020-06310-W
|
[26] |
Nguyen K A, Liou Y A, Tran H P, et al. Soil salinity assessment by using near-infrared channel and vegetation soil salinity index derived from Landsat 8 OLI data: A case study in the Tra Vinh Province, Mekong Delta, Vietnam[J]. Progress in Earth and Planetary Science, 2020, 7(1): 1-16.
doi: 10.1186/s40645-019-0311-0
|
[27] |
马国林. 耦合多源传感器与机器学习算法的渭-库绿洲土壤盐分估测[D]. 乌鲁木齐: 新疆大学, 2021.
|
|
[ Ma Guolin. Estimation of soil salinity in Weigan-Kuqa Oasis coupling multi-source sensors and machine learning algorithms[D]. Urumqi: Xinjiang University, 2021. ]
|