[1] |
Tiecheng B, Nannan Z, Mercatoris B, et al. Jujube yield prediction method combining Landsat 8 vegetation index and the phenological length[J]. Computers and Electronics in Agriculture, 2019, 162: 1011-1027.
doi: 10.1016/j.compag.2019.05.035
|
[2] |
徐翔燕, 侯瑞环, 牛荣. 基于GF-1号的红枣种植面积提取方法[J]. 塔里木大学学报, 2019, 31(3): 32-38.
|
|
[Xu Xiangyan, Hou Ruihuan, Niu Rong. Extraction method of Chinese jujube planting area based on GF-1[J]. Journal of Tarim University, 2019, 31(3): 32-38.]
|
[3] |
徐晗泽宇, 刘冲, 王军邦, 等. Google Earth Engine平台支持下的赣南柑橘果园遥感提取研究[J]. 地球信息科学学报, 2018, 20(3): 396-404.
doi: 10.12082/dqxxkx.2018.170553
|
|
[Xu Hanzeyu, Liu Chong, Wang Junbang, et al. Study on extraction of citrus orchard in Gannan region based on Google Earth Engine platform[J]. Journal of Geo-information Science, 2018, 20(3): 396-404.]
|
[4] |
乔海浪. 基于NDVI时间序列重构的经济型人工林时空分布信息提取研究[D]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
|
|
[Qiao Hailang. The extraction of spatial and temperal information of economic man-made forests based on NDVI time series[D]. Beijing: University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences), 2017.]
|
[5] |
Li R, Fang P, Xu W, et al. Classifying forest types over a mountainous area in southwest China with Landsat data composites and multiple environmental factors[J]. Forests, 2022, 13(1): 135, doi: 10.3390/f13010135.
|
[6] |
美合日阿依·莫一丁, 买买提·沙吾提, 李金朝. 基于Sentinel-2时间序列数据及物候特征的棉花种植区提取[J]. 干旱区地理, 2022, 45(6): 1847-1859.
|
|
[Moyidin Mihray, Sawut Mamat, Li Jinzhao. Extraction of cotton planting area based on Sentinel-2 time series data and phenological characteristics[J]. Arid Land Geography, 2022, 45(6): 1847-1859.]
|
[7] |
沈江龙, 郑江华, 尼格拉·吐尔逊, 等. 若羌绿洲特色林果种植信息遥感提取方法适用性分析[J]. 中国农业资源与区划, 2022, 43(2): 206-219.
|
|
[Shen Jianglong, Zheng Jianghua, Tuerxun Nigela, et al. Applicability analysis of remote sensing extraction method for planting information of characteristic forest fruit in Ruoqiang oasis[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(2): 206-219.]
|
[8] |
王来刚, 郭燕, 贺佳, 等. 遥感数据辅助下县域耕地质量评价与空间分布研究[J]. 中国农业资源与区划, 2022, 43(12): 137-146.
|
|
[Wang Laigang, Guo Yan, He Jia, et al. Cultivated land quality evaluation and spatial distribution in Anyang County supported by remote sensing data[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(12): 137-146.]
|
[9] |
杨梅花, 程锦涛, 郭佳星, 等. 新疆城市规模分布与自然地理相关性分析[J]. 干旱区地理, 2022, 45(6): 1958-1967.
|
|
[Yang Meihua, Cheng Jintao, Guo Jiaxing, et al. Correlation analysis of urban scale distribution and physical geography in Xinjiang[J]. Arid Land Geography, 2022, 45(6): 1958-1967.]
|
[10] |
李金叶, 袁强, 蒋慧. 基于区域适应性的特色林果业发展探讨[J]. 新疆农业科学, 2010, 47(4): 741-749.
|
|
[Li Jinye, Yuan Qiang, Jiang Hui. A discussion on development of featured forestry and fruit growing based on the regional adaptability[J]. Xinjiang Agricultural Sciences, 2010, 47(4): 741-749.]
|
[11] |
李曦光, 王蕾, 刘平, 等. 基于MaxEnt模型的新疆红枣生态适宜性与区划分析[J]. 新疆农业科学, 2020, 57(10): 1785-1791.
doi: 10.6048/j.issn.1001-4330.2020.10.003
|
|
[Li Xiguang, Wang Lei, Liu Ping, et al. Study on ecological suitability and regionalization of Xinjiang jujube based on MaxEnt model[J]. Xinjiang Agricultural Sciences, 2020, 57(10): 1785-1791.]
doi: 10.6048/j.issn.1001-4330.2020.10.003
|
[12] |
马战林, 刘昌华, 薛华柱, 等. GEE环境下融合主被动遥感数据的冬小麦识别技术[J]. 农业机械学报, 2021, 52(9): 195-205.
|
|
[Ma Zhanlin, Liu Changhua, Xue Huazhu, et al. Identification of winter wheat by integrating active and passive remote sensing data based on Google Earth Engine platform[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(9): 195-205.]
|
[13] |
王林江, 吴炳方, 张淼, 等. 关键生育期冬小麦和油菜遥感分类方法[J]. 地球信息科学学报, 2019, 21(7): 1121-1131.
doi: 10.12082/dqxxkx.2019.180421
|
|
[Wang Linjiang, Wu Bingfang, Zhang Miao, et al. Winter wheat and rapeseed classification during key growth period by integrating multi-source remote sensing data[J]. Journal of Geo-information Science, 2019, 21(7): 1121-1131.]
|
[14] |
张学艺, 戴小笠, 张玉兰, 等. 用EOS/MODIS-NDVI监测枣树生长状况的分析[J]. 宁夏大学学报(自然科学版), 2012, 33(2): 201-204.
|
|
[Zhang Xueyi, Dai Xiaoli, Zhang Yulan, et al. Study of jujube growth situation to be monitored with EOS/MODIS-NDVI data[J]. Journal of Ningxia University (Natural Science Edition), 2012, 33(2): 201-204.]
|
[15] |
熊皓丽, 周小成, 汪小钦, 等. 基于GEE云平台的福建省10 m分辨率茶园专题空间分布制图[J]. 地球信息科学学报, 2021, 23(7): 1325-1337.
doi: 10.12082/dqxxkx.2021.200583
|
|
[Xiong Haoli, Zhou Xiaocheng, Wang Xiaoqin, et al. Mapping the spatial distribution of tea plantations with 10 m resolution in Fujian Province using Google Earth Engine[J]. Journal of Geo-information Science, 2021, 23(7): 1325-1337.]
|
[16] |
Yelu Z, Dalei H, Alfredo H, et al. Optical vegetation indices for monitoring terrestrial ecosystems globally[J]. Nature Reviews Earth & Environment, 2022, 3(7): 477-493.
|
[17] |
敖登, 杨佳慧, 丁维婷, 等. 54种植被指数研究进展综述[J]. 安徽农业科学, 2023, 51(1): 13-21, 28.
|
|
[Ao Deng, Yang Jiahui, Ding Weiting, et al. Review of 54 vegetation indices[J]. Anhui Agricultural Sciences, 2023, 51(1): 13-21, 28.]
|
[18] |
Jinru X, Baofeng S. Significant remote sensing vegetation indices: A review of developments and applications[J]. Journal of Sensors, 2017: 1-17, doi: 10.1155/2017/1353691.
|
[19] |
Haralick R M. Statistical and structural approaches to texture[J]. Proceedings of the IEEE, 1979, 67(5): 786-804.
|
[20] |
Vizzari M. PlanetScope, Sentinel-2, and Sentinel-1 data integration for object-based land cover classification in Google Earth Engine[J]. Remote Sensing, 2022, 14(11): 2628, doi: 10.3390/rs14112628.
|
[21] |
Zhao Y, Zhu W, Wei P, et al. Classification of Zambian grasslands using random forest feature importance selection during the optimal phenological period[J]. Ecological Indicators, 2022, 135: 108529, doi: 10.1016/j.ecolind.2021.108529.
|
[22] |
Agarwal S, Nagendra H. Classification of Indian cities using Google Earth Engine[J]. Journal of Land Use Science, 2019, 14(4-6): 425-439.
doi: 10.1080/1747423X.2020.1720842
|
[23] |
马玥, 姜琦刚, 孟治国, 等. 基于随机森林算法的农耕区土地利用分类研究[J]. 农业机械学报, 2016, 47(1): 297-303.
|
|
[Ma Yue, Jiang Qigang, Meng Zhiguo, et al. Classification of land use in farming area based on random forest algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 297-303.]
|
[24] |
何昭欣, 张淼, 吴炳方, 等. Google Earth Engine支持下的江苏省夏收作物遥感提取[J]. 地球信息科学学报, 2019, 21(5): 752-766.
doi: 10.12082/dqxxkx.2019.180420
|
|
[He Zhaoxin, Zhang Miao, Wu Bingfang, et al. Extraction of summer crop in Jiangsu based on Google Earth Engine[J]. Journal of Geo-information Science, 2019, 21(5): 752-766.]
|
[25] |
Pelletier C, Valero S, Inglada J, et al. Assessing the robustness of random forests to map land cover with high resolution satellite image time series over large areas[J]. Remote Sensing of Environment, 2016, 187: 156-168.
|
[26] |
Loukika K N, Keesara V R, Sridhar V. Analysis of land use and land cover using machine learning algorithms on Google Earth Engine for Munneru River Basin, India[J]. Sustainability, 2021, 13(24): 13758, doi: 10.3390/su132413758.
|
[27] |
Tassi A, Vizzari M. Object-oriented LULC classification in Google Earth Engine combining SNIC, GLCM, and machine learning algorithms[J]. Remote Sensing. 2020, 12(22): 3776, doi: 10.3390/rs122-23776.
|
[28] |
孙玮婕, 杨军. 改进的简单非迭代聚类的遥感影像分割研究[J]. 计算机工程与应用, 2021, 57(13): 185-192.
doi: 10.3778/j.issn.1002-8331.2004-0286
|
|
[Sun Weijie, Yang Jun. Research on remote sensing image segmentation based on improved simple non-iterative clustering[J]. Computer Engineering and Applications, 2021, 57(13): 185-192.]
doi: 10.3778/j.issn.1002-8331.2004-0286
|
[29] |
黄文静, 蔡兴航, 张严磊, 等. 基于面向对象分类法的陕西佳县大枣种植面积提取研究[J]. 中国中药杂志, 2019, 44(19): 4116-4120.
|
|
[Huang Wenjing, Cai Xinghang, Zhang Yanlei, et al. Research on extraction of Zizyphus jujuba planting area in Jia County of Shaanxi[J]. China Academy of Chinese Medical Sciences, 2019, 44(19): 4116-4120.]
|