收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2025, Vol. 48 ›› Issue (8): 1363-1373.doi: 10.12118/j.issn.1000-6060.2024.556 cstr: 32274.14.ALG2024556

• 气候与水文 • 上一篇    下一篇

河西走廊夏秋季2次强沙尘暴天气成因及传输特征分析

张春燕1,2(), 李岩瑛1,2(), 吴雯1, 陈静1, 马幸蔚1, 聂鑫2   

  1. 1.武威国家气候观象台,甘肃 武威 733000
    2.中国气象局兰州干旱气象研究所,甘肃省干旱气候变化与减灾重点实验室/中国气象局干旱气候变化与减灾重点开放实验室,甘肃 兰州 730020
  • 收稿日期:2024-09-14 修回日期:2024-12-16 出版日期:2025-08-25 发布日期:2025-08-21
  • 通讯作者: 李岩瑛(1970-),女,博士,正研级高工,主要从事天气预报及研究工作. E-mail: lyyqxj@163.com
  • 作者简介:张春燕(1990-),女,本科,工程师,主要从事天气预报及研究工作. E-mail: 18919457866@163.com
  • 基金资助:
    国家自然科学基金面上项目(41975015);甘肃省气象局气象科研项目(ZcMs2024-B-23);甘肃省自然科学基金(24JRRH003)

Causes and transport characteristics of two strong sandstorms in summer and autumn in the Hexi Corridor

ZHANG Chunyan1,2(), LI Yanying1,2(), WU Wen1, CHEN Jing1, MA Xingwei1, NIE Xin2   

  1. 1. Wuwei National Climate Observatory, Wuwei 733000, Gansu, China
    2. Key Laboratory of Arid Climatic Change and Reducing Disaster of Gansu Province/Key Open Laboratory of Arid Climatic Change and Disaster Reduction of CMA, Institute of Arid Meteorology, China Meteorological Administration, Lanzhou 730020, Gansu, China
  • Received:2024-09-14 Revised:2024-12-16 Published:2025-08-25 Online:2025-08-21

摘要: 2023年夏季河西走廊出现了近60 a最强的区域性高温干旱事件,大风沙尘天气频发,9月6—7日民勤县出现近40 a来9月最强沙尘暴。选取2023年河西走廊夏秋季2次强沙尘暴过程,对前期气象要素变化、天气学条件、边界层特征等进行分析,应用HYSPLIT模式向后轨迹、Himawari-8卫星沙尘监测等方法得出该区沙尘的来源及传输路径。结果表明:(1)2023年夏季河西走廊区域性高温干旱事件,为沙尘暴发生提供了丰富的沙尘条件。(2)西西伯利亚65°~85°E、50°~58°N存在低压槽,新疆东部-河西走廊呈阶梯槽形势,河西走廊存在中尺度切变,500 hPa冷中心≤-20 ℃、700 hPa冷中心≤0 ℃,中空急流≥20 m·s-1、低空急流≥14 m·s-1K指数≥21 ℃,辐合区位于700 hPa以下,散度≤-0.75×10-5 s-1;辐散区位于700~650 hPa,散度≥0.75×10-5 s-1;上升运动层位于800~600 hPa,垂直速度≤-0.6 hPa·s-1;700 hPa以下为正涡度区,强度≥0.75×10-5 s-1。(3)沙源以本地沙尘为主时,近地层空气湿度是沙尘暴强度的主要影响因素。(4)相较春季沙尘暴,夏秋季沙尘暴的形成需要更强的上升运动、更大的近地层风速及地面3 h变压差。

关键词: 夏秋季强沙尘暴, 区域性高温干旱, 遥感监测, 传输特征, 河西走廊

Abstract:

In the summer of 2023, the Hexi Corridor, northwest China experienced its most intense regional high-temperature drought in nearly 60 years, accompanied by frequent wind and dust events. Notably, on September 6—7, Minqin County recorded its most severe sandstorm in almost 40 years. This study investigates two significant sandstorm events (on August 16, on September 6—7) in the Hexi Corridor during the summer and autumn of 2023. The evolution of meteorological elements, synoptic conditions, and boundary layer characteristics preceding the events is analyzed. The sources and transport pathways of dust are determined using the HYSPLIT model’s backward trajectory analysis and Sunflower 8 dust monitoring. The findings are as follows: (1) The regional high temperatures and drought provided ample material conditions for sandstorm development. (2) Synoptic analysis reveals that low-pressure troughs between 65°-85°E and 50°-58°N, combined with a stepped trough pattern from eastern Xinjiang to the Hexi Corridor and mesoscale shear, contributed to the events. At 500 hPa, the cold center intensity was ≤−20 ℃; at 700 hPa, it was ≤0 ℃. The mid-level jet exceeded 20 m·s−1, the low-level jet exceeded 14 m·s−1, and the K index was ≥21 ℃. Convergence occurred below 700 hPa (divergence ≤-0.75×10−5 s−1), and divergence occurred between 700-650 hPa (divergence ≥0.75×10−5 s−1). Ascending motion was observed between 800-600 hPa with intensity ≤−0.6 hPa·s−1. Below 700 hPa was a region of positive vorticity with intensity ≥0.75×10−5 s−1. (3) When the dust source is primarily local, near-surface humidity is the key factor influencing sandstorm intensity. (4) Compared to spring events, sandstorms in summer and autumn require stronger vertical motion, higher wind speeds, and larger 3 h pressure differentials for formation.

Key words: strong sandstorms from summer to autumn, regional high temperature and drought, remote sensing monitoring, transmission characteristics, Hexi Corridor