收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2025, Vol. 48 ›› Issue (12): 2122-2131.doi: 10.12118/j.issn.1000-6060.2025.082 cstr: 32274.14.ALG2025082

• 气候变化与地表过程 • 上一篇    下一篇

中天山北坡中段夏季降水时空变化及与海拔高度的关系——以乌鲁木齐县为例

苗运玲1,2(), 霍达1, 姚芳1, 江远安3()   

  1. 1 乌鲁木齐市气象局新疆 乌鲁木齐 830002
    2 达坂城国家综合气象观测专项试验外场基地新疆 乌鲁木齐 830006
    3 新疆维吾尔自治区气象台新疆 乌鲁木齐 830002
  • 收稿日期:2025-02-20 修回日期:2025-04-22 出版日期:2025-12-25 发布日期:2025-12-30
  • 通讯作者: 江远安(1969-),女,硕士,正高级工程师,主要从事气象灾害风险预警和评估研究. E-mail: jya_69@163.com
  • 作者简介:苗运玲(1976-),女,高级工程师,主要从事灾害性天气研究. E-mail: hmmyl65313@163.com
  • 基金资助:
    新疆气象局创新发展专项面上项目(NS202322)

Spatiotemporal variation of summer precipitation on the central northern slope of the Central Tianshan Mountains: A case study of Urumqi County

MIAO Yunling1,2(), HUO Da1, YAO Fang1, JIANG Yuan’an3()   

  1. 1 Urumqi Meteorological Bureau, Urumqi 830002, Xinjiang, China
    2 Dabancheng Special Test Field base of National Integrated Meteorological Observation, Urumqi 830006, Xinjiang, China
    3 Xinjiang Uygur Autonomous Region Meteorological Observatory, Urumqi 830002, Xinjiang, China
  • Received:2025-02-20 Revised:2025-04-22 Published:2025-12-25 Online:2025-12-30

摘要:

基于2016—2024年夏季乌鲁木齐县19个气象站(包括3个国家级气象站和16个区域自动气象站)的高密度观测站网数据,系统分析了乌鲁木齐县夏季降水量、降水日数时空分布特征及其与海拔高度的响应关系。结果表明:(1) 乌鲁木齐县夏季降水集中出现在6—7月,小雨对夏季降水贡献最大,中雨次之,暴雨最小,大雨及以上量级虽仅占夏季降水日数7.8%,但其对夏季降水量贡献高达36.1%,凸显了极端降水的高风险性。(2) 夏季降水量(日数)及各等级降水量(日数)空间分布均呈东北—西南向梯度递增,降水高值区位于海拔>1600 m的中高山带,前山带降水相对较少且暴雨事件发生概率小。(3) 夏季降水量(日数)与海拔存在显著正相关,海拔每升高100 m,降水量增加13.1 mm、降水日数增加1.8 d,并在海拔2100 m附近存在最大降水带。研究结果可为中天山北坡中段云水资源开发、生态系统恢复及山洪灾害预警指标优化提供量化依据,同时深化了对干旱区山地水循环机理认识,对中亚干旱区水资源管理具有参考意义。

关键词: 降水量, 降水日数, 海拔, 中天山北坡中段

Abstract:

Based on the high-density observation data from 19 meteorological stations (including three national-level meteorological stations and 16 regional automatic meteorological stations) in Urumqi County during the summer of 2016—2024, this study systematically analyzes the spatial and temporal distribution characteristics of summer precipitation and precipitation days in Urumqi County, as well as their corresponding response relationship with altitude. Results revealed that the summer precipitation mainly occurs from June to July, with light rain contributing the most to the precipitation, followed by moderate rain and rainstorms. Although heavy rain only accounts for 7.8% of the summer precipitation days, its contribution toward the summer precipitation is as high as 36.1%, highlighting the high risk of extreme precipitation. In addition, the spatial distribution of the summer precipitation (in days) and precipitation at different levels (in days) exhibited a northeast southwest gradient increase, with high-value precipitation areas located in the mid- to high-mountain ranges, >1600 m above sea level. The precipitation in the front mountain range was relatively low, and the probability of heavy rain events was also low. Summer precipitation (number of days) and altitude had a significant positive correlation. For every 100 m increase in altitude, precipitation increased by 13.1 mm and precipitation days increased by 1.8 days. The maximum precipitation zone existed near an altitude of 2100 m. The research results can provide quantitative basis for the development of cloud water resources, ecosystem restoration, and the optimization of mountain flood warning indicators in the central northern slope of the Central Tianshan Mountains. This study deepens the understanding of the mountain-water cycle mechanism, and the findings can be used to implement water resource management strategies in arid areas of Central Asia.

Key words: precipitation, number of precipitation days, altitude, the central northern slope of the Central Tianshan Mountains