[1] |
王绍强, 周成虎, 李克让, 等. 中国土壤有机碳库及空间分布特征分析[J]. 地理学报, 2000, 67(5):533-544.
|
|
[ Wang Shaoqiang, Zhou Chenghu, Li Kerang, et al. Analysis on spatial distribution characteristics of soil organic carbon reservoir in China[J]. Acta Geographica Sinica, 2000, 67(5):533-544. ]
|
[2] |
朱阿兴, 杨琳, 樊乃卿, 等. 数字土壤制图研究综述与展望[J]. 地理科学进展, 2018, 37(1):66-78.
doi: 10.18306/dlkxjz.2018.01.008
|
|
[ Zhu A’xing, Yang Lin, Fan Naiqing, et al. The review and outlook of digital soil mapping[J]. Progress in Geography, 2018, 37(1):66-78. ]
doi: 10.18306/dlkxjz.2018.01.008
|
[3] |
Scull P, Franklin J, Chadwick O A, et al. Predictive soil mapping: A review[J]. Progress in Physical Geography, 2003, 27(2):171-197.
|
[4] |
Moore I D, Gessler P E, Nielsen G A E, et al. Soil attribute prediction using terrain analysis[J]. Soil Science Society of America Journal, 1993, 57(2):443-452.
doi: 10.2136/sssaj1993.03615995005700020026x
|
[5] |
张甘霖, 朱阿兴, 史舟, 等. 土壤地理学的进展与展望[J]. 地理科学进展, 2018, 37(1):57-65.
doi: 10.18306/dlkxjz.2018.01.007
|
|
[ Zhang Ganlin, Zhu A’xing, Shi Zhou, et al. Progress and future prospect of soil geography[J]. Progress in Geography, 2018, 37(1):57-65. ]
doi: 10.18306/dlkxjz.2018.01.007
|
[6] |
Jahan N, Gan T Y. Modelling the vegetation-climate relationship in a boreal mixedwood forest of Alberta using normalized difference and enhanced vegetation indices[J]. International Journal of Remote Sensing, 2011, 32(2):313-335.
doi: 10.1080/01431160903464146
|
[7] |
Thompson J A, Pena Yewtukhiw E M, Grove J H. Soil-landscape modeling across a physiographic region: Topographic patterns and model transportability[J]. Geoderma, 2006, 133(1-2):57-70.
doi: 10.1016/j.geoderma.2006.03.037
|
[8] |
Zhu A X, Band L, Vertessy R, et al. Derivation of soil properties using a soil land inference model (SoLIM)[J]. Soilence Society of America Journal, 1997, 61(2):523-533.
|
[9] |
郭旭东, 傅伯杰, 马克明, 等. 基于GIS和地统计学的土壤养分空间变异特征研究——以河北省遵化市为例[J]. 应用生态学报, 2000(4):557-563.
|
|
[ Guo Xudong, Fu Bojie, Ma Keming, et al. Spatial variability of soil nutrients based on geostatistics combined with GIS: A case study in Zunhua City of Hebei Province[J]. Chinese Journal of Applied Ecology, 2000(4):557-563. ]
|
[10] |
Frogbrook Z L, Oliver M A. Comparing the spatial predictions of soil organic matter determined by two laboratory methods[J]. Soil Use and Management, 2001, 17(4):235-244.
doi: 10.1111/sum.2001.17.issue-4
|
[11] |
Poggio T, Smale S. The mathematics of learning: Dealing with data[J]. Notices of the American Mathematical Society, 2003, 50(5):537-544.
|
[12] |
Sebastiani F. Machine learning in automated text categorization[J]. ACM Computing Surveys, 2002, 34(1):1-47.
doi: 10.1145/505282.505283
|
[13] |
王茵茵, 齐雁冰, 陈洋, 等. 基于多分辨率遥感数据与随机森林算法的土壤有机质预测研究[J]. 土壤学报, 2016, 53(2):342-354.
|
|
[ Wang Yinyin, Qi Yanbing, Chen Yang, et al. Prediction of soil organic matter based on multi-resolution remote sensing data and random forest algorithm[J]. Acta Pedologica Sinica, 2016, 53(2):342-354. ]
|
[14] |
郭澎涛, 李茂芬, 罗微, 等. 基于多源环境变量和随机森林的橡胶园土壤全氮含量预测[J]. 农业工程学报, 2015, 31(5):194-200.
|
|
[ Guo Pengtao, Li Maofen, Luo Wei, et al. Prediction of soil total nitrogen for rubber plantation at regional scale based on environmental variables and random forest approach[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5):194-200. ]
|
[15] |
Lu Y Y, Liu F, Zhao Y G, et al. An integrated method of selecting environmental covariates for predictive soil depth mapping[J]. Journal of Integrative Agriculture, 2019, 18(2):301-315.
doi: 10.1016/S2095-3119(18)61936-7
|
[16] |
Tomislav H, Heuvelink G B M, Bas K, et al. Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions[J]. Plos One, 2015, 10(6):e0125814, doi: 10.1371/journal.pone.0125814.
doi: 10.1371/journal.pone.0125814
|
[17] |
Malone B P, McBratney A B, Minasny B, et al. Mapping continuous depth functions of soil carbon storage and available water capacity[J]. Geoderma, 2009, 154(1-2):138-152.
doi: 10.1016/j.geoderma.2009.10.007
|
[18] |
Mansuy N, Thiffault E, Paré D, et al. Digital mapping of soil properties in Canadian managed forests at 250 m of resolution using the K-nearest neighbor method[J]. Geoderma, 2014, 235:59-73.
|
[19] |
Curtis J R, Newell R K, James J C, et al. Statistical and machine learning methods evaluated for incorporating soil and weather into corn nitrogen recommendations[J]. Computers and Electronics in Agriculture, 2019, 164:104872, doi: 10.1016/j.compag.2019.104872.
doi: 10.1016/j.compag.2019.104872
|
[20] |
任丽, 杨联安, 王辉, 等. 基于随机森林的苹果区土壤有机质空间预测[J]. 干旱区资源与环境, 2018, 32(8):141-146.
|
|
[ Ren Li, Yang Lian’an, Wang Hui, et al. Spatial prediction of soil organic matter in apple region based on random forest[J]. Journal of Arid Land Resources and Environment, 2018, 32(8):141-146. ]
|
[21] |
Forkuor G, Hounkpatin O K L, Welp G, et al. High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: A comparison of machine learning and multiple linear regression models[J]. Plos One, 2017, 12(1):e0170478, doi: 10.1371/journal.pone.0170478.
doi: 10.1371/journal.pone.0170478
|
[22] |
袁玉琦, 陈瀚阅, 张黎明, 等. 基于多变量与RF算法的耕地土壤有机碳空间预测研究——以福建亚热带复杂地貌区为例[J/OL]. [2020-12-21]. https://kns.cnki.net/kcms/detail/32.1119.P.20200824.1432.002.html .
|
|
[ Yuan Yuqi, Chen Hanyue, Zhang Liming, et al. Prediction of spatial distribution of soil organic carbon in farmland based on multi-variables and random forest algorithm: A case study of a subtropical complex geomorphic region in Fujian as an example[J/OL]. [2020-12-21]. http://kns.cnki.net/kcms/detail/32.1119.P.20200824.1432.002.html .]
|
[23] |
张振华, 丁建丽, 王敬哲, 等. 集成土壤-环境关系与机器学习的干旱区土壤属性数字制图[J]. 中国农业科学, 2020, 53(3):563-573.
|
|
[ Zhang Zhenhua, Ding Jianli, Wang Jingzhe, et al. Digital soil properties mapping by ensembling soil-environment relationship and machine learning in arid regions[J]. Scientia Agricultura Sinica, 2020, 53(3):563-573. ]
|
[24] |
王念一, 于丰华, 许童羽, 等. 基于机器学习的粳稻叶片叶绿素含量高光谱反演建模[J]. 浙江农业学报, 2020, 32(2):359-366.
|
|
[ Wang Nianyi, Yu Fenghua, Xu Tongyu, et al. Hyperspectral retrieval modelling for chlorophyll contents of japonica-rice leaves based on machine learning[J]. Acta Agriculturae Zhejiangensis, 2020, 32(2):359-366. ]
|
[25] |
Zheng L, Watson D G, Johnston B F, et al. A chemometric study of chromatograms of tea extracts by correlation optimization warping in conjunction with PCA, support vector machines and random forest data modeling[J]. Analytica Chimica Acta, 2009, 642(1-2):257-265.
doi: 10.1016/j.aca.2008.12.015
pmid: 19427484
|
[26] |
聂红梅, 杨联安, 李新尧, 等. 基于PCA-SVR的冬小麦土壤水分预测[J]. 土壤, 2018, 50(4):812-818.
|
|
[ Nie Hongmei, Yang Lian’an, Li Xinyao, et al. Prediction of soil moisture of winter wheat by PCA-SVR[J]. Soils, 2018, 50(4):812-818. ]
|
[27] |
刘新华, 杨勤科, 汤国安. 中国地形起伏度的提取及在水土流失定量评价中的应用[J]. 水土保持通报, 2001, 21(1):57-59, 62.
|
|
[ Liu Xinhua, Yang Qinke, Tang Guo’an. Extraction and application of relief of China based on DEM and GIS method[J]. Bulletin of Soil and Water Conservation, 2001, 21(1):57-59, 62. ]
|
[28] |
张彩霞, 杨勤科, 李锐. 基于DEM的地形湿度指数及其应用研究进展[J]. 地理科学进展, 2005, 24(6):116-123.
|
|
[ Zhang Caixia, Yang Qinke, Li Rui. Advancement in topographic wetness index and its application[J]. Progress in Geography, 2005, 24(6):116-123. ]
|
[29] |
李朝荣, 刘扬, 李春明. PCA与KPCA在综合评价中的应用[J]. 宜宾学院学报, 2010, 10(12):27-30.
|
|
[ Li Chaorong, Liu Yang, Li Chunming. Application of PCA and KPCA in comprehensive evaluation[J]. Journal of Yibin University, 2010, 10(12):27-30. ]
|
[30] |
王瀛, 郭雷, 梁楠. 基于优选样本的KPCA高光谱图像降维方法[J]. 光子学报, 2011, 40(6):847-851.
|
|
[ Wang Ying, Guo Lei, Liang Nan. A dimensionality reduction method based on KPCA with optimized sample set for hyperspectral image[J]. Acta Photonica Sinica, 2011, 40(6):847-851. ]
|
[31] |
杨道军, 钱新, 钱瑜, 等. 核主成分分析法在生态经济可持续发展评价中应用[J]. 环境科学与技术, 2007(12):91-93, 122.
|
|
[ Yang Daojun, Qian Xin, Qian Yu, et al. Application of kernel principal component analysis in evaluation of sustainable development of ecological economy[J]. Environmental Science & Technology, 2007(12):91-93, 122. ]
|
[32] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
doi: 10.1023/A:1010933404324
|
[33] |
Cutler A, Cutler D R, Stevens J R. Random forests[J]. Machine Learning, 2011, 45(1):157-176.
|
[34] |
Awad M, Khanna R. Support vector regression[J]. Neural Information Processing Letters & Reviews, 2007, 11(10):203-224.
|
[35] |
毋雪雁, 王水花, 张煜东. K最近邻算法理论与应用综述[J]. 计算机工程与应用, 2017, 53(21):1-7.
|
|
[ Wu Xueyan, Wang Shuihua, Zhang Yudong. Survey on theory and application of K-nearest-neighbors algorithm[J]. Computer Engineering and Applications, 2017, 53(21):1-7. ]
|
[36] |
毕达天, 邱长波, 张晗. 数据降维技术研究现状及其进展[J]. 情报理论与实践, 2013, 36(2):125-128.
|
|
[ Bi Datian, Qiu Changbo, Zhang Han. Current situation and latest development of research on data dimension reduction technology[J]. Information Studies: Theory & Application, 2013, 36(2):125-128. ]
|
[37] |
刘炳春, 符川川, 李健. 基于PCA-SVR模型的中国CO2排放量预测研究[J]. 干旱区资源与环境, 2018, 32(4):56-61.
|
|
[ Liu Bingchun, Fu Chuanchuan, Li Jian. Forecast of CO2 emission in China based on PCA-SVR[J]. Journal of Arid Land Resources and Environment, 2018, 32(4):56-61. ]
|
[38] |
赵帅, 黄亦翔, 王浩任, 等. 基于随机森林与主成分分析的刀具磨损评估[J]. 机械工程学报, 2017, 53(21):181-189.
|
|
[ Zhao Shuai, Huang Yixiang, Wang Haoren, et al. Random forest and principle components analysis based on health assessment methodology for tool wear[J]. Journal of Mechanical Engineering, 2017, 53(21):181-189. ]
|
[39] |
许杏花, 潘庭龙. 基于KPCA-RF的风电场功率预测方法研究[J]. 可再生能源, 2018, 36(9):1323-1327.
|
|
[ Xu Xinghua, Pan Tinglong. Wind power prediction based on KPCA-RF[J]. Renewable Energy Resources, 2018, 36(9):1323-1327. ]
|
[40] |
Michael E T, Cambridge C N. Sparse kernel principal component analysis[J]. Advances in Neural Information Processing Systems, 2001, 13:633-639.
|
[41] |
高新波, 谢维信. 模糊聚类理论发展及应用的研究进展[J]. 科学通报, 1999, 44(21):3-5.
|
|
[ Gao Xinbo, Xie Weixin. Research progress on the development and application of fuzzy clustering theory[J]. Chinese Science Bulletin, 1999, 44(21):3-5. ]
|
[42] |
任丽. 基于多源环境变量的土壤养分预测及综合评价[D]. 西安: 西北大学, 2019.
|
|
[ Ren Li. Spatial prediction and comprehensive evaluation of soil nutrients based on environmental variables[D]. Xi’an: Northwest University, 2019. ]
|
[43] |
赵业婷. 基于GIS的陕西省关中地区耕地土壤养分空间特征及其变化研究[D]. 杨凌: 西北农林科技大学, 2015.
|
|
[ Zhao Yeting. Spatial characteristics and changes of soil nutrients in cultivated land of Guanzhong region in Shaanxi Province based on GIS[D]. Yangling: Northwest A & F University, 2015. ]
|
[44] |
邱扬, 傅伯杰, 王军, 等. 黄土高原小流域土壤养分的时空变异及其影响因子[J]. 自然科学进展, 2004, 14(3):56-61.
|
|
[ Qiu Yang, Fu Bojie, Wang Jun, et al. Temporal and spatial variability and influencing factors of soil nutrients in small watersheds of the Loess Plateau[J]. Progress in Natural Science, 2004, 14(3):56-61. ]
|
[45] |
杨景成, 韩兴国, 黄建辉, 等. 土壤有机质对农田管理措施的动态响应[J]. 生态学报, 2003, 23(4):787-796.
|
|
[ Yang Jingcheng, Han Xingguo, Huang Jianhui, et al. The dynamics of soil organic matter in cropland responding to agricultural practices[J]. Acta Ecologica Sinica, 2003, 23(4):787-796. ]
|
[46] |
宋明伟, 李爱宗, 蔡立群, 等. 耕作方式对土壤有机碳库的影响[J]. 农业环境科学学报, 2009, 27(2):224-228.
|
|
[ Song Mingwei, Li Aizong, Cai Liqun, et al. Effects of different tillage methods on soil organic carbon pool[J]. Journal of Agro-Environment Science, 2009, 27(2):224-228. ]
|