[1] |
樊自立, 徐海量, 傅荩仪, 等. 塔里木河下游生态保护目标和措施[J]. 中国沙漠, 2013, 33(4):1191-1197.
|
|
[ Fan Zili, Xu Hailiang, Fu Jinyi, et al. Ecological protection objects and restoration measures in the lower reaches of Tarim River[J]. Journal of Desert Research, 2013, 33(4):1191-1197. ]
|
[2] |
Chen Yaning, Li Weihong, Xu Changchun, et al. Desert riparian vegetation and groundwater in the lower reaches of the Tarim River Basin[J]. Environmental Earth Sciences, 2015, 73(2):547-558.
doi: 10.1007/s12665-013-3002-y
|
[3] |
马学喜, 李生宇, 徐新文, 等. 咸水灌溉对三种柽柳幼苗成活和生长状况的影响[J]. 干旱区资源与环境, 2016, 30(1):185-190.
|
|
[ Ma Xuexi, Li Shengyu, Xu Xinwen, et al. Effects of different mineralized irrigation water on seedling survival and growth of three species of Tamarix in Taklimakan Desert[J]. Journal of Arid Land Resources and Environment, 2016, 30(1):185-190. ]
|
[4] |
朱金方, 夏江宝, 陆兆华, 等. 盐旱交叉胁迫对柽柳幼苗生长及生理生化特性的影响[J]. 西北植物学报, 2012, 32(1):124-130.
|
|
[ Zhu Jinfang, Xia Jiangbao, Lu Zhaohua, et al. Growth physiological and biochemical characteristics of Tamarix chinensis seedlings under salt-drought intercross stress[J]. Acta Botanica Boreal-Occidentalia Sinica, 2012, 32(1):124-130. ]
|
[5] |
廖岩, 彭友贵, 陈桂珠. 植物耐盐性机理研究进展[J]. 生态学报, 2007, 27(5):2077-2089.
|
|
[ Liao Yan, Peng Yougui, Chen Guizhu. Research advances in plant salt-tolerance mechanism[J]. Acta Ecologica Sinica, 2007, 27(5):2077-2089. ]
|
[6] |
Moreno F, Cabrera F, Fernandez-boy E, et al. Irrigation with saline water in the reclaimed marsh soils of south-west Spain: Impact on soil properties and cotton and sugar beet crops[J]. Agricultural Water Management, 2001, 48(2):133-150.
doi: 10.1016/S0378-3774(00)00120-7
|
[7] |
李发永, 王兴鹏, 林杰, 等. 不同矿化度的微咸水滴灌对红枣根区土壤碱解氮的影响[J]. 干旱区研究, 2013, 30(3):424-429.
|
|
[ Li Fayong, Wang Xingpeng, Lin Jie, et al. Effect of drip irrigation with brackish water with different salinities on soil alkali-hydrolyzable nitrogen content in rhizosphere of Ziziphus jujuba trees[J]. Arid Zone Research, 2013, 30(3):424-429. ]
|
[8] |
王利界, 周智彬, 常青, 等. 盐旱交叉胁迫对灰胡杨(Populus pruinosa)幼苗生长和生理生化特性的影响[J]. 生态学报, 2018, 38(19):7026-7033.
|
|
[ Wang LiJie, Zhou Zhibin, Chang Qing, et al. Growth, physiological and biochemical characteristics of Populus pruinosa seedlings under salt-drought stress[J]. Acta Ecologica Sinica, 2018, 38(19):7026-7033. ]
|
[9] |
薛新伟, 杨恒山, 张瑞富, 等. 滴灌对半干旱地区土壤水盐运动和次生盐渍化影响的研究进展[J]. 中国农学通报, 2019, 35(32):89-94.
|
|
[ Xue Xinwei, Yang Hengshan, Zhang Ruifu, et al. Effects of drip irrigation on soil water and salt movement and secondary salinization in semi-arid areas: Research progress[J]. Chinese Agricultural Science Bulletin, 2019, 35(32):89-94. ]
|
[10] |
窦凯歌, 王永东, 雷加强, 等. 咸水滴灌下塔里木沙漠公路防护林土壤盐分分布特征分析[J]. 干旱区地理, 2015, 38(3):576-584.
|
|
[ Dou Kaige, Wang Yongdong, Lei Jiaqiang, et al. Salt distribution characteristics of Taklimakan Desert highway shelterbelt under saline water drip-irrigation[J]. Arid Land Geography, 2015, 38(3):576-584. ]
|
[11] |
李丙文. 塔里木沙漠公路防护林咸水灌溉水盐调控机理研究[D]. 北京: 北京林业大学, 2010.
|
|
[ Li Bingwen. Mechnism of water-salt regulation for the shelterbelts with saline water irrigation along the Tarim Desert Highway[D]. Beijing: Beijing Forestry University, 2010. ]
|
[12] |
Simunek J, Van Genuchten M T, Sejna M. The HYDRUS-1D solfware package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media[J]. University of California-Riverside Research Reports, 2005(3):1-240.
|
[13] |
李冰冰, 王云强, 李志. HYDRUS-1D模型模拟渭北旱塬深剖面土壤水分的适用性[J]. 应用生态学报, 2019, 30(2):398-404.
|
|
[ Li Bingbing, Wang Yunqiang, Li Zhi. Applicability of HYDRUS-1D model in simulating the soil moisture in deep profiles on the Weibei rainfed highland[J]. Chinese Journal of Applied Ecology, 2019, 30(2):398-404. ]
|
[14] |
何康康, 杨艳敏, 杨永辉. 基于HYDRUS-1D模型的华北低平原区不同微咸水利用模式下土壤水盐运移的模拟[J]. 中国生态农业学报, 2016, 24(8):1059-1070.
|
|
[ He Kangkang, Yang Yanmin, Yang Yonghui. HYDRUS-1D model simulation of soil water and salt movement under various brackish water use schemes in the North China Lowplain[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8):1059-1070. ]
|
[15] |
余根坚, 黄介生, 高占义. 基于HYDRUS模型不同灌水模式下土壤水盐运移模拟[J]. 水利学报, 2013, 44(7):826-834.
|
|
[ Yu Genjian, Huang Jiesheng, Gao Zhanyi. Study on water and salt transportation of different irrigation modes by the simulation of HYDRUS model[J]. Journal of Hydraulic Engineering, 2013, 44(7):826-834. ]
|
[16] |
李开明, 刘洪光, 石培君, 等. 明沟排水条件下的土壤水盐运移模拟[J]. 干旱区研究, 2018, 35(6):1299-1307.
|
|
[ Li Kaiming, Liu Hongguang, Shi Peijun, et al. Simulation of soil water and salt migration under open-ditch drainage[J]. Arid Zone Research, 2018, 35(6):1299-1307. ]
|
[17] |
曹巧红, 龚元石. 应用Hydrus-1D模型模拟分析冬小麦农田水分氮素运移特征[J]. 植物营养与肥料学报, 2003(2):139-145.
|
|
[ Cao Qiaohong, Gong Yuanshi. Simulation and analysis of water balance and nitrogen leaching using Hydrus-1D under winter wheat crop[J]. Plant Nutrition and Fertilizer Science, 2003(2):139-145. ]
|
[18] |
周宏, 赵文智. 荒漠区包气带土壤物理特征及其对地下水毛管上升影响的模拟[J]. 应用生态学报, 2019, 30(9):2999-3009.
|
|
[ Zhou Hong, Zhao Wenzhi. Soil physical characteristics of shallow vadose zone and modeling its effects on upward capillary rise of groundwater in an arid-desert area[J]. Chinese Journal of Applied Ecology, 2019, 30(9):2999-3009. ]
|
[19] |
郑博文, 胡顺军, 周智彬, 等. 古尔班通古特沙漠南缘风沙土土壤水分特征与毛管水最大上升高度[J]. 干旱区地理, 2020, 43(4):1059-1066.
|
|
[ Zheng Bowen, Hu Shunjun, Zhou Zhibin, et al. Maximum height of capillary rising water and characteristic of soil moisture in the southern edge of Gurbantunggut Desert[J]. Arid Land Geography, 2020, 43(4):1059-1066. ]
|
[20] |
Grinevskii S O. Modeling root water uptake when calculating unsaturated flow in the vadose zone and groundwater recharge[J]. Moscow University Geology Bulletin, 2011, 66(3):189-201.
doi: 10.3103/S0145875211030057
|
[21] |
侯裕生, 王振华, 李文昊, 等. 水肥耦合对极端干旱区滴灌葡萄耗水规律及作物系数影响[J]. 水土保持学报, 2019, 33(2):279-286, 330.
|
|
[ Hou Yusheng, Wang Zhenhua, Li Wenhao, et al. Effects of water and fertilizer coupling on water consumption and crop coefficient of drip irrigated grape in extreme arid area[J]. Journal of Soil and Water Conservation, 2019, 33(2):279-286, 330. ]
|
[22] |
陈胜楠, 孔喆, 陈立欣, 等. 半干旱区城市环境下油松林分蒸腾特征及其影响因子[J]. 生态学报, 2020, 40(4):1269-1280.
|
|
[ Chen Shengnan, Kong Zhe, Chen Lixin, et al. The stand transpiration characteristics of Pinus tabulaeformis and its influential factors in a semi-arid urban environment[J]. Acta Ecologica Sinica, 2020, 40(4):1269-1280. ]
|
[23] |
丁新原, 周智彬, 徐新文, 等. 咸水滴灌下塔克拉玛干沙漠腹地人工防护林土壤水盐动态[J]. 土壤学报, 2016, 53(1):103-116.
|
|
[ Ding Xinyuan, Zhou Zhibin, Xu Xinwen, et al. Dynamics of soil water and salt in soil under artificial plantation shelterbelt drip-irrigated with saline water in the center of the Taklimakan Desert[J]. Acta Pedologica Sinica, 2016, 53(1):103-116. ]
|
[24] |
周智彬, 李培军, 徐新文, 等. 塔克拉玛干沙漠腹地人工绿地对沙地盐分时空分布的影响[J]. 水土保持学报, 2002, 16(2):16-19.
|
|
[ Zhou Zhibin, Li Peijun, Xu Xinwen, et al. Effect of artificial green belt on salt distribution in sand land in hinterland of Taklimakan Desert[J]. Journal of Soil and Water Conservation, 2002, 16(2):16-19. ]
|
[25] |
李亮, 史海滨, 贾锦凤, 等. 内蒙古河套灌区荒地水盐运移规律模拟[J]. 农业工程学报, 2010, 26(1):31-35.
|
|
[ Li Liang, Shi Haibin, Jia Jinfeng, et al. Simulation of water and salt transport of uncultivated land in Hetao Irrigation District in Inner Mongolia[J]. Transactions of the CSAE, 2010, 26(1):31-35. ]
|
[26] |
石培君, 刘洪光, 何新林, 等. 基于HYDRUS模型的暗管排水水盐运移模拟[J]. 干旱地区农业研究, 2019, 37(3):224-231.
|
|
[ Shi Peijun, Liu Hongguang, He Xinlin, et al. The simulation of water and salt transportation under subsurface drainage by HYDRUS model[J]. Agricultural Research in the Arid Areas, 2019, 37(3):224-231. ]
|
[27] |
李会杰, 易军, 赵英, 等. 浅层地下水对玉米根区水分及根系吸水影响的数值模拟[J]. 灌溉排水学报, 2015, 34(11):35-38, 46.
|
|
[ Li Huijie, Yi Jun, Zhao Ying, et al. Effects of shallow groundwater table on root zone and root water uptake of maize using numerical model[J]. Journal of Irrigation and Drainage, 2015, 34(11):35-38, 46. ]
|
[28] |
王在敏, 何雨江, 靳孟贵, 等. 运用土壤水盐运移模型优化棉花微咸水膜下滴灌制度[J]. 农业工程学报, 2012, 28(17):63-70.
|
|
[ Wang Zaimin, He Yujiang, Jin Menggui, et al. Optimization of mulched drip-irrigation with brackish water for cotton using soil-water-salt numerical simulation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(17):63-70. ]
|