收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2012, Vol. 35 ›› Issue (03): 438-445.

• 气候与水文 • 上一篇    下一篇

基于GIS的新疆气温数据栅格化方法研究

陈鹏翔,毛炜峄   

  1. 新疆维吾尔自治区气候中心,新疆乌鲁木齐830002
  • 收稿日期:2011-10-17 修回日期:2011-12-25 出版日期:2012-05-25
  • 通讯作者: 陈鹏翔
  • 作者简介:陈鹏翔(1983-),男,硕士,新疆人,工程师,现从事GIS在气候变化、气候资源等领域的业务服务工作与相关研究
  • 基金资助:

    新疆维吾尔自治区气象局业务新技术项目(yx201102);中国气象局气候变化专项(新疆区域气候变化评估报告);国家自然科学基金项目(41065006)联合资助

GISbased spatial interpolation of air temperature in Xinjiang

CHEN Pengxiang,MAO Weiyi   

  1. Xinjiang Meteorological Observatory Urumqi 830002,Xinjiang,China
  • Received:2011-10-17 Revised:2011-12-25 Online:2012-05-25
  • Contact: CHEN Pengxiang

摘要: 以新疆99个气象台站1971-2010年年平均气温为数据源,采用多元回归结合空间插值的方法对新疆区域气温数据进行栅格化研究。建立了年平均气温与台站经纬度和海拔高度的多元回归模型,对于残差数据的插值采用了反距离权重法(IDW) 、普通克立格法 (Kriging)和样条函数法(Spline)3种目前应用广泛的空间插值方法,针对于这3种方法进行了基于MAE和RMSIE的交叉验证和对比分析,结果表明在新疆的年平均气温的GIS插值方案中,IDW方法精度总体要高于其他两种插值方法。

关键词: GIS, 空间插值, 气温, 栅格

Abstract: With Surfer, Grads as a platform for direct space interpolation was widely used in meteorological rasterization of air temperature data, whatever the spatial interpolation technique (Spline, IDW, Lagrangian, Hennite interpolation, etc.), do not take into account the effects of topography on the air temperature distribution, In recent years with the expansion of GIS technology applications, the method of regression model by geographic factors (elevation, longitude, latitude, etc.) combined with spatial interpolation was used in gridbased regional climate factors and get good results. In this paper, used regression analysis methods combined with GIS spatial interpolation to rasterization of year mean air temperatures from 1971 to 2010 in Xinjiang area, the 99 meteorological stations(10 of them in order to verify) that has complete observations involved in the calculation. We use the following method for air temperature data rasterization in Xinjiang region, Firstly, establish the average temperature multiple regression model with the air temperature data that measured by weather station (excluding test station) for the output variables, and the longitude grid data, latitude grid data and altitude grid data of meteorological stations for the input variables, obtain the regression equation and the temperature residuals data for each weather station; Secondly, calculate the air temperature grid data (regular part) of the each observations station use the digital elevation model (DEM), the latitude grid data and longitude grid data by the regression equation, and then the residuals grid data (irregular part) to be rasterized with a spatial interpolation method(Three methods including IDW, Kriging and Spline); Finally, the two parts of the data grid computing has been to estimate the actual temperature. The authors used this method to rasterization the air temperature grid data of the Xinjiang region for many years (the average temperature data for 40 years, most recently 2010, the hottest years 2007 and the coldest years 1984). Comparative and analysis of residual data interpolation with inverse distance weighting method (IDW), ordinary kriging (Kriging) and Spline (Spline) method, overall, the result of mean absolute errors (MAE) and Root Mean Squared Interpolation Error (RMSIE) from crossvalidation tests is IDW gives lowest errors. The other question is, even if we use the best method (IDW) to create raster data of the air temperature in Xinjiang, the rasterized grid of error is significantly larger than the most other provinces in China, mainly due to Xinjiang’s unique geospatial and sparse distribution of meteorological observation site, so how to improve the accuracy of simulation grid is the key of the future rasterized grid in Xinjiang.

Key words: GIS, spatial interpolation, air temperature, grid

中图分类号: 

  • P423.3