干旱区地理 ›› 2024, Vol. 47 ›› Issue (11): 1899-1914.doi: 10.12118/j.issn.1000-6060.2023.667
马国荣1(), 庄淏然1, 许德浩1, 马永成1, 赵梦扬1, 冯克鹏1,2,3()
收稿日期:
2023-11-24
修回日期:
2024-03-11
出版日期:
2024-11-25
发布日期:
2024-12-03
通讯作者:
冯克鹏(1979-),男,博士,教授,主要从事水文遥感与农业遥感、气候变化与水文响应研究. E-mail: fengkp@nxu.edu.cn作者简介:
马国荣(1999-),男,硕士研究生,主要从事灌区农田水文过程及水分利用效率研究. E-mail: mgr1005@163.com
基金资助:
MA Guorong1(), ZHUANG Haoran1, XU Dehao1, MA Yongcheng1, ZHAO Mengyang1, FENG Kepeng1,2,3()
Received:
2023-11-24
Revised:
2024-03-11
Published:
2024-11-25
Online:
2024-12-03
摘要:
玉米是干旱区灌溉农业的主要作物之一,研究灌溉水入渗与玉米分层吸水规律对理解玉米农田系统中土壤-植被-大气连续体(SPAC)输水过程尤为重要。以地处干旱气候带的宁夏青铜峡引黄灌区为研究区域,采集了玉米生育期内降水、灌溉水、地下水、玉米茎秆以及1 m内不同深度的7层土壤样品,分析了其δ2H、δ18O的变化特征,并在氢氧稳定同位素的指示下,结合土壤体积含水率研究了灌溉水进入田间后的入渗过程,进而分别运用直接对比法和贝叶斯混合模型研究了玉米对各层土壤水分的吸收比例和规律。结果表明:(1)青铜峡引黄灌区历次降水、灌溉水、地下水的氢氧同位素呈富集趋势,玉米茎秆水氢氧同位素逐渐贫化;土壤水氢氧同位素在浅层(0~30 cm)富集,浅层以下趋于稳定。(2)灌区大气降水线为δ2H=6.67δ18O-9,降水受云下二次蒸发作用影响显著,降水和灌溉水进入田间后在土壤表面进行了强烈的蒸发,地下水受降水和灌溉水补给。(3)灌溉水在进入田间后的5 d内迅速下渗,活塞流是灌区内土壤水的主要入渗形式。(4)灌区玉米主要吸收0~30 cm浅层土壤水,整个生育期吸收比例达到44.70%;灌水后玉米的主要吸水层位没有发生变化,浅层贡献比例最大。(5)玉米对土壤水的分层吸收利用与土壤温度、土壤体积含水率密切相关,浅层土壤温度的升高以及由于蒸腾和蒸发作用导致的土壤体积含水率降低,促使玉米增加对中深层土壤水的利用;浅层土壤水分对玉米生长至关重要,干旱情况下需要通过及时灌溉补充玉米主要吸水土壤层水分以保证其正常的生长发育。
马国荣, 庄淏然, 许德浩, 马永成, 赵梦扬, 冯克鹏. 青铜峡引黄灌区农田灌溉水入渗与玉米分层吸水规律研究[J]. 干旱区地理, 2024, 47(11): 1899-1914.
MA Guorong, ZHUANG Haoran, XU Dehao, MA Yongcheng, ZHAO Mengyang, FENG Kepeng. Water infiltration and maize root water uptake patterns in the Qingtongxia Yellow River irrigation district[J]. Arid Land Geography, 2024, 47(11): 1899-1914.
表2
不同层土壤水δ2H和δ18O特征值统计"
土壤层/cm | δ2H/‰ | δ18O/‰ | |||||||
---|---|---|---|---|---|---|---|---|---|
最大值 | 最小值 | 平均值 | 标准差 | 最大值 | 最小值 | 平均值 | 标准差 | ||
0~10 | -43.50 | -66.88 | -57.48 | 7.00 | -4.06 | -8.21 | -6.06 | 1.28 | |
10~20 | -39.48 | -74.70 | -63.95 | 11.97 | -3.51 | -9.23 | -6.83 | 2.19 | |
20~30 | -67.35 | -78.63 | -72.95 | 3.48 | -7.25 | -9.69 | -8.71 | 0.78 | |
30~40 | -68.30 | -77.77 | -73.75 | 2.84 | -7.37 | -9.63 | -8.88 | 0.71 | |
40~60 | -69.11 | -81.03 | -75.34 | 4.09 | -7.77 | -10.23 | -9.24 | 0.77 | |
60~80 | -71.36 | -79.30 | -75.82 | 2.62 | -8.41 | -9.93 | -9.39 | 0.49 | |
80~100 | -72.80 | -79.42 | -75.61 | 2.34 | -8.78 | -10.18 | -9.46 | 0.44 |
[1] | Guo Q, Huang G M, Guo Y L, et al. Optimizing irrigation and planting density of spring maize under mulch drip irrigation system in the arid region of northwest China[J]. Field Crops Research, 2021, 266: 108141, doi: 10.1016/j.fcr.2021.108141. |
[2] |
杨阳, 齐月, 赵鸿, 等. 水分胁迫对干旱半干旱区玉米关键生育期生长发育及产量的影响及评价[J]. 干旱气象, 2022, 40(6): 1059-1067.
doi: 10.11755/j.issn.1006-7639(2022)-06-1059 |
[Qi Yue, Zhao Hong, et al. Effects and evaluations of water stress on growth development and yield of maize during critical growth periods in arid and semi-arid regions[J]. Journal of Arid Meteorology, 2022, 40(6): 1059-1067.] | |
[3] | 韩新生, 许浩, 蔡进军, 等. 立地因子和盖度对宁南黄土区中庄小流域玉米土壤水分的影响[J]. 水土保持研究, 2023, 30(6): 112-122. |
[Han Xinsheng, Xu Hao, Cai Jinjun, et al. Effects of site factor and coverage on soil moisture of maize field in Zhongzhuang small watershed in the loess area of southern Ningxia[J]. Research of Soil and Water Conservation, 2023, 30(6): 112-122.] | |
[4] | 龚容, 徐霞, 田晓宇, 等. 三种锦鸡儿属植物水力结构特征及其干旱适应策略[J]. 生态学报, 2018, 38(14): 4984-4993. |
[Gong Rong, Xu Xia, Tian Xiaoyu, et al. Hydraulic architecture characteristics and drought adaption strategies for three Caragana genus species[J]. Acta Ecologica Sinica, 2018, 38(14): 4984-4993.] | |
[5] | 康绍忠. 中国农业节水十年: 成就、挑战及对策[J]. 中国水利, 2024(10): 1-9. |
[Kang Shaozhong. Ten years of agricultural water-saving in China: Achievements, challenges and measures[J]. China Water Resources, 2024(10): 1-9.] | |
[6] | 张应华, 仵彦卿, 温小虎, 等. 环境同位素在水循环研究中的应用[J]. 水科学进展, 2006(5): 738-747. |
[Zhang Yinghua, Wu Yanqing, Wen Xiaohu, et al. Application of environmental isotopes in water cycle[J]. Advances in Water Science, 2006(5): 738-747.] | |
[7] | 李丙祥, 刘秀花, 陈云飞. 毛乌素沙地包气带土壤水稳定同位素分布特征及其来源判别[J]. 干旱区资源与环境, 2021, 35(9): 110-117. |
[Li Bingxiang, Liu Xiuhua, Chen Yunfei. Distribution characteristics and source discrimination of soil water stable isotope in shallow aerated zone of Mu Us Sandy Land[J]. Journal of Arid Land Resources and Environment, 2021, 35(9): 110-117.] | |
[8] |
郝帅, 李发东. 艾比湖流域典型荒漠植被水分利用来源研究[J]. 地理学报, 2021, 76(7): 1649-1661.
doi: 10.11821/dlxb202107006 |
[Hao Shuai, Li Fadong. Water sources of the typical desert vegetation in Ebinur Lake Basin[J]. Acta Geographica Sinica, 2021, 76(7): 1649-1661.]
doi: 10.11821/dlxb202107006 |
|
[9] | 李光莹, 祖姆热提·于苏甫江, 董正武, 等. 古尔班通古特沙漠西南缘地区多枝柽柳(Tamarix ramosissima)生理特性对沙堆不同堆积阶段的响应[J]. 生态学报, 2024, 44(8): 1-14. |
[Li Guangying, Yusufujiang Zumrat, Dong Zhengwu, et al. Response of physiological characteristics of Tamarix ramosissima to different accumulation stages of cones in the southwestern margin of Gurbantungut Desert[J]. Acta Ecologica Sinica, 2024, 44(8): 1-14.] | |
[10] | 聂云鹏, 陈洪松, 王克林. 土层浅薄地区植物水分来源研究方法[J]. 应用生态学报, 2010, 21(9): 2427-2433. |
[Nie Yunpeng, Chen Hongsong, Wang Kelin. Methods for determining plant water source in thin soil region: A review[J]. Chinese Journal of Applied Ecology, 2010, 21(9): 2427-2433.]
pmid: 21265170 |
|
[11] | Ruppenthal M, Oelmann Y, Wilcke W. Isotope ratios of nonexchangeable hydrogen in soils from different climate zones[J]. Geoderma, 2010, 155(3): 231-241. |
[12] | Vega-Grau A M, McDonnell J, Schmidt S, et al. Isotopic fractionation from deep roots to tall shoots: A forensic analysis of xylem water isotope composition in mature tropical savanna trees[J]. Science of the Total Environment, 2021, 795: 148675, doi: 10.1016/j.scitotenv.2021.148675. |
[13] |
高阳, 韩磊, 柳利利, 等. 宁夏河东沙地不同坡度柠条锦鸡儿(Caragana korshinskii)水分利用策略差异[J]. 干旱区地理, 2022, 45(4): 1212-1223.
doi: 10.12118/j.issn.1000-6060.2021.495 |
[Gao Yang, Han Lei, Liu Lili, et al. Differences in water use strategies of Caragana korshinskii at different slopes in the east sandy land of the Yellow River in Ningxia[J]. Arid Land Geography, 2022, 45(4): 1212-1223.]
doi: 10.12118/j.issn.1000-6060.2021.495 |
|
[14] | 曾祥明, 徐宪立, 钟飞霞, 等. MixSIAR和IsoSource模型解析植物水分来源的比较研究[J]. 生态学报, 2020, 40(16): 5611-5619. |
[Zeng Xiangming, Xu Xianli, Zhong Feixia, et al. Comparative study of MixSIAR and IsoSource models in the analysis of plant water sources[J]. Acta Ecologica Sinica, 2020, 40(16): 5611-5619.] | |
[15] | 杜勤勤. 基于氢氧稳定同位素的兰州市南北两山植物水分来源研究[D]. 兰州: 西北师范大学, 2020. |
[Du Qinqin. Study on water sources of plant species based on stable oxygen and hydrogen isotopes in the northern and southern mountains of the Lanzhou City[D]. Lanzhou: Northwest Normal University, 2020.] | |
[16] | Stock B C, Jackson A L, Ward E J, et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models[J]. PeerJ, 2018, 6: e5096, doi: 10.7717/peerj.5096. |
[17] | 林光辉. 稳定同位素生态学[M]. 北京: 高等教育出版社, 2013: 125-432. |
[Lin Guanghui. Stable isotope ecology[M]. Beijing: Chinese High Education Press, 2013: 125-432.] | |
[18] | 刘目兴, 宋兴敏, 卢世国, 等. 三峡库区不同植被覆盖坡地的土壤优先流运动特征研究[J]. 土壤学报, 2022, 59(5): 1321-1335. |
[Liu Muxing, Song Xingmin, Lu Shiguo, et al. Research on the characteristics of preferential flow movement along varied hillslopes covered with different vegetation in the Three Gorges Reservoir Area[J]. Acta Pedologica Sinica, 2022, 59(5): 1321-1335.] | |
[19] | Sun Z Y, Feng M M, Zhang X Y, et al. A healthier water use strategy in primitive forests contributes to stronger water conservation capabilities compared with secondary forests[J]. Science of the Total Environment, 2022, 851: 158290, doi: 10.1016/j.scitotenv.2022.158290. |
[20] |
钟晓菲, 张明军, 张宇, 等. 基于稳定同位素的兰州市南北两山土壤水入渗模式[J]. 干旱区研究, 2023, 40(11): 1744-1753.
doi: 10.13866/j.azr.2023.11.04 |
[Zhong Xiaofei, Zhang Mingjun, Zhang Yu, et al. Soil water infiltration process in north and south mountains of Lanzhou City based on stable isotope[J]. Arid Zone Research, 2023, 40(11): 1744- 1753.]
doi: 10.13866/j.azr.2023.11.04 |
|
[21] | 王仕琴, 宋献方, 肖国强, 等. 基于氢氧同位素的华北平原降水入渗过程[J]. 水科学进展, 2009, 20(4): 495-501. |
[Wang Shiqin, Song Xianfang, Xiao Guoqiang, et al. Appliance of oxygen and hydrogen isotope in the process of precipitation infiltration in the shallow groundwater areas of North China Plain[J]. Advances in Water Science, 2009, 20(4): 495-501.] | |
[22] | 李彩霞, 周新国, 孙景生, 等. 根区交替控制灌溉条件下玉米根系吸水规律[J]. 生态学报, 2015, 35(7): 2170-2176. |
[Li Caixia, Zhou Xinguo, Sun Jingsheng, et al. Root water uptake of maize with controlled root-divided alternative irrigation[J]. Acta Ecologica Sinica, 2015, 35(7): 2170-2176.] | |
[23] | 杨培岭, 王瑜, 任树梅, 等. 咸淡水交替灌溉下土壤水盐分布与玉米吸水规律研究[J]. 农业机械学报, 2020, 51(6): 273-281. |
[Yang Peiling, Wang Yu, Ren Shumei, et al. Soil moisture and saline distribution characteristics and maize stem water uptake under alternate irrigation between saline water and groundwater[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 273-281.] | |
[24] | 郭慧文. 基于氢氧稳定同位素的民勤绿洲玉米耗水规律研究[D]. 兰州: 西北师范大学, 2021. |
[Guo Huiwen. Water consumption of maize in the Minqin oasis based on hydrogen and oxygen stable isotopes[D]. Lanzhou: Northwest Normal University, 2021.] | |
[25] | 吴友杰. 基于稳定同位素的覆膜灌溉农田SPAC水分传输机制与模拟[D]. 北京: 中国农业大学, 2017. |
[Wu Youjie. Water transfer mechanism and simulation of SPAC in irrigated and film-mulching farmland based on stable isotope[D]. Beijing: China Agricultural University, 2017.] | |
[26] | Wang P, Song X F, Han D M, et al. A study of root water uptake of crops indicated by hydrogen and oxygen stable isotopes: A case in Shanxi Province, China[J]. Agricultural Water Management, 2010, 97(3): 475-482. |
[27] | Yang B, Wen X F, Sun X M. Irrigation depth far exceeds water uptake depth in an oasis cropland in the middle reaches of Heihe River Basin[J]. Scientific Reports, 2015, 5(1): 15206, doi: 10.1038/srep15206. |
[28] |
庄淏然, 冯克鹏, 许德浩. 蒸散分离的玉米水分利用效率变化及影响因素[J]. 干旱区研究, 2023, 40(7): 1117-1130.
doi: 10.13866/j.azr.2023.07.09 |
[Zhuang Haoran, Feng Kepeng, Xu Dehao. Changes, influencing factors and sensitivity of water use efficiency in maize farmland ecosystems based on evapotranspiration separation in the Ningxia irrigated area[J]. Arid Zone Research, 2023, 40(7): 1117-1130.]
doi: 10.13866/j.azr.2023.07.09 |
|
[29] | 许德浩, 冯克鹏, 庄淏然. WOFOST作物模型对青铜峡灌区夏玉米生长模拟的适用性评估[J]. 西北水电, 2023(4): 15-22. |
[Xu Dehao, Feng Kepeng, Zhuang Haoran. Applicability evaluation of WOFOST crop model for summer maize growth simulation in Qingtongxia irrigation area[J]. Northwest Hydropower, 2023(4): 15-22.] | |
[30] |
Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703.
pmid: 17814749 |
[31] | Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468. |
[32] | 杨晔, 张明军, 张宇, 等. 基于氢氧稳定同位素的兰州南山绿化植物种选择——以锦鸡儿为例[J]. 生态学杂志, 2023, 42(1): 83-90. |
[Yang Ye, Zhang Mingjun, Zhang Yu, et al. Selection of greening plant species in the south Mountains of Lanzhou based on hydrogen and oxygen stable isotopes: A case study of Caragana[J]. Chinese Journal of Ecology, 2023, 42(1): 83-90.] | |
[33] |
张岁梦, 叶丽敏, 周肄智, 等. 南方丘陵区马尾松-麻栎群落水分利用来源及其影响因素[J]. 应用生态学报, 2023, 34(7): 1729-1736.
doi: 10.13287/j.1001-9332.202307.010 |
[Zhang Suimeng, Ye Limin, Zhou Yizhi, et al. Water use sources and its influencing factors of Pinus massoniana and Quercus acutissima community in hilly region of southern China[J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1729-1736.]
doi: 10.13287/j.1001-9332.202307.010 |
|
[34] | 张宇, 张明军, 王圣杰, 等. 基于稳定氧同位素确定植物水分来源不同方法的比较[J]. 生态学杂志, 2020, 39(4): 1356-1368. |
[Zhang Yu, Zhang Mingjun, Wang Shengjie, et al. Comparison of different methods for determining plant water sources based on stable oxygen isotope[J]. Chinese Journal of Ecology, 2020, 39(4): 1356-1368.] | |
[35] | 杜俊杉, 马英, 胡晓农, 等. 基于双稳定同位素和MixSIAR模型的冬小麦根系吸水来源研究[J]. 生态学报, 2018, 38(18): 6611-6622. |
[Du Junshan, Ma Ying, Hu Xiaonong, et al. Applying dual stable isotopes and a MixSIAR model to determine root water uptake of winter wheat[J]. Acta Ecologica Sinica, 2018, 38(18): 6611-6622.] | |
[36] | 岳伶俐, 夏雄, 胡德勇, 等. 基于氢氧同位素的油茶果实生长高峰期水分来源量化[J]. 农业工程学报, 2021, 37(20): 154-161. |
[Yue Lingli, Xia Xiong, Hu Deyong, et al. Quantifying the water sources of Camellia oleifera during fruit growth peak period using hydrogen and oxygen isotopes[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(20): 154-161.] | |
[37] | Zhu G F, Yong L L, Zhang Z X, et al. Infiltration process of irrigation water in oasis farmland and its enlightenment to optimization of irrigation mode: Based on stable isotope data[J]. Agricultural Water Management, 2021, 258: 107173, doi: 10.1016/j.agwat.2021.107173. |
[38] | 赵志鹏, 杨丽虎, 公亮, 等. 永宁引黄灌区土壤水分运移的同位素特征研究[J]. 灌溉排水学报, 2020, 39(10): 42-49. |
[Zhao Zhipeng, Yang Lihu, Gong Liang, et al. Tracing water infiltration in soils with isotopes in the Yongning irrigation district in the Yellow River Basin[J]. Journal of Irrigation and Drainage, 2020, 39(10): 42-49.] | |
[39] | Brooks J R, Barnard H R, Coulombe R, et al. Ecohydrologic separation of water between trees and streams in a Mediterranean climate[J]. Nature Geoscience, 2010, 3(2): 100-104. |
[40] | 杨源峰, 韦慧, 王建羽, 等. 喀斯特区两种岩性发育土壤入渗特征及其影响因素[J]. 农业现代化研究, 2023, 44(6): 1103-1116. |
[Yang Yuanfeng, Wei Hui, Wang Jianyu, et al. Infiltration characteristics and influencing factors of two types of lithological soils in karst regions[J]. Research of Agricultural Modernization, 2023, 44(6): 1103-1116.] | |
[41] | Albasha R, Mailhol J C, Cheviron B. Compensatory uptake functions in empirical macroscopic root water uptake models-experimental and numerical analysis[J]. Agricultural Water Management, 2015, 155: 22-39. |
[42] | 吕国红, 谢艳兵, 温日红, 等. 东北玉米根系生物量模型的构建[J]. 中国生态农业学报, 2019, 27(4): 572-580. |
[Lü Guohong, Xie Yanbing, Wen Rihong, et al. Modeling root biomass of maize in northeast China[J]. Chinese Journal of Eco-Agriculture, 2019, 27(4): 572-580.] | |
[43] | 陈鹏狮, 纪瑞鹏, 谢艳兵, 等. 东北春玉米不同发育期干旱胁迫对根系生长的影响[J]. 干旱地区农业研究, 2018, 36(1): 156-163. |
[Chen Pengshi, Ji Ruipeng, Xie Yanbing, et al. Effects of drought stresses during key growth periods on root growth of spring maize in northeast China[J]. Agricultural Research in the Arid Areas, 2018, 36(1): 156-163.] | |
[44] | 杨明达, 张素瑜, 杨慎骄, 等. 地下滴灌对冬小麦-夏玉米根系吸水特征的影响[J]. 生态学杂志, 2023, 36(5): 1-13. |
[Yang Mingda, Zhang Suyu, Yang Shenjiao, et al. Effects of subsurface drip irrigation on root water uptake of winter wheat and summer maize[J]. Chinese Journal of Ecology, 2023, 36(5): 1-13.] | |
[45] | 马仪, 黄组桂, 贾江栋, 等. 基于无人机-卫星遥感升尺度的土壤水分监测模型研究[J]. 农业机械学报, 2023, 54(6): 307-318. |
[Ma Yi, Huang Zugui, Jia Jiangdong, et al. Soil moisture monitoring model based on UAV-satellite remote sensing scale-up[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(6): 307-318.] |
[1] | 石玉东, 王圣杰, 张明军, 朱成刚, 车彦军. 昆仑山北坡地表水氢氧稳定同位素空间分布特征[J]. 干旱区地理, 2024, 47(7): 1127-1135. |
[2] | 吕雯改, 江宇威, 马兴羽, 刘蕾, 薛杰, 张波, 黄彩变. 昆仑山北坡车尔臣河流域平原区地表水和地下水水化学特征[J]. 干旱区地理, 2024, 47(10): 1617-1627. |
[3] | 吉卫波, 赵银鑫, 虎博文, 杨丽虎, 公亮, 马玉学. 宁夏苦水河流域地表水与地下水转化关系研究[J]. 干旱区地理, 2023, 46(10): 1612-1621. |
[4] | 高阳,韩磊,柳利利,王娜娜,彭苓,周鹏,展秀丽. 宁夏河东沙地不同坡度柠条锦鸡儿(Caragana korshinskii)水分利用策略差异[J]. 干旱区地理, 2022, 45(4): 1212-1223. |
[5] | 高阳,韩磊,韩永贵,黄晓宇,彭苓,柳利利. 银川平原降水氢氧稳定同位素时间尺度效应及水汽来源[J]. 干旱区地理, 2022, 45(1): 91-102. |
[6] | 郝帅,李发东,李艳红,朱农,乔云峰,田超,杨涵,付凯. 艾比湖流域降水、地表水和地下水稳定同位素特征[J]. 干旱区地理, 2021, 44(4): 934-942. |
[7] | 杨羽帆, 曹生奎, 曹广超, 雷义珍, 刘英, 兰垚. 青海湖沙柳河流域浅层地下水不同时期补给特征 [J]. 干旱区地理, 2020, 43(3): 633-643. |
[8] | 王邺凡, 余武生, 张寅生, 张腾, 高海峰, Muhammad Atif Wazir. 印度河上游Bagrot山谷降水稳定同位素变化及与水汽来源的关系[J]. 干旱区地理, 2019, 42(2): 252-262. |
[9] | 潘素敏, 张明军, 王圣杰. 新疆夏季云下二次蒸发对雨滴稳定同位素影响的定量研究[J]. 干旱区地理, 2018, 41(3): 488-498. |
[10] | 王礼恒, 董艳辉, 宋凡, 张江义, 童少青, 张倩. 甘肃石油河流域地下水补给来源与演化特征分析[J]. 干旱区地理, 2017, 40(1): 54-61. |
[11] | 姜海宁, 谷洪彪, 迟宝明, 姜纪沂, 李瑛, 李海君, 王贺. 新疆昭苏-特克斯盆地地表水与地下水转化关系研究[J]. 干旱区地理, 2016, 39(5): 1078-1088. |
[12] | 赵玮, 马金珠, 何建华. 党河流域敦煌盆地地下水补给与演化研究[J]. 干旱区地理, 2015, 38(6): 1133-1141. |
[13] | 许文强,陈曦,罗格平,冯异星. 基于稳定同位素技术的土壤碳循环研究进展[J]. 干旱区地理, 2014, 37(5): 980-987. |
[14] | 潘峰,张清寰,何建华. 甘肃董志塬地区第四系地下水补给环境与水化学特征演化[J]. 干旱区地理, 2014, 37(1): 9-18. |
|