收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2019, Vol. 42 ›› Issue (2): 252-262.doi: 10.12118/j.issn.1000-6060.2019.02.04

• 气候与水文 • 上一篇    下一篇

印度河上游Bagrot山谷降水稳定同位素变化及与水汽来源的关系

王邺凡1,2,余武生1,3,张寅生1,3,张腾1,3,高海峰1,Muhammad Atif Wazir1,2,4   

  1. (1.中国科学院青藏高原研究所青藏高原环境变化与地表过程重点实验室,北京 100101; 2.中国科学院大学,北京 10049;3.中国科学院青藏高原地球科学卓越创新中心,北京 100101; 4.巴基斯坦气象局,伊斯兰堡,巴基斯坦)
  • 出版日期:2019-03-25 发布日期:2019-03-07
  • 通讯作者: 张寅生,E-mail: yszhang@itpcas.ac.cn
  • 作者简介:王邺凡 (1991 - ),男,河南安阳人,在读硕士研究生,主要研究方向为地表水文过程 E-mail: wangyefan@itpcas.ac.cn
  • 基金资助:
    中国科学院战略性先导科技专项(B类)(XDB03030200);中国科学院国际合作局对外合作重点项目(131C11KYSB20150006);国家自然科学基金项目(4161101128; 41671054)

Precipitation stable isotope variation and its relationship with moisture sources in Bagrot Valley of Upper Indus Basin

WANG Ye-fan1,2, YU Wu-sheng1,3, ZHANG Yin-sheng1,3, ZHANG Teng1,3, GAO Hai-feng1, MUHAMMAD Atif Wazir1,2,4   

  1. (1. Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research; Chinese Academy of Sciences,Beijing 100101,China; 2. University of Chinese Academy of Sciences, Beijing 100049, China;  3. Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101; 4. Pakistan Meteorological Department, Islamabad, Pakistan)
  • Online:2019-03-25 Published:2019-03-07

摘要: 利用2015年8月至2016年7月在印度河上游流域Bagrot山谷降水稳定同位素(δ18O和δD)观测结果以及当地气象资料,利用同位素示踪及统计分析方法,并结合HYSPLIT模型,对研究区降水稳定同位素变化特征、大气水线以及水汽来源进行了分析。结果表明,观测期间Bagrot山谷降水稳定同位素的季节变化明显,δ18O与δD秋冬季偏低,春夏季偏高,且与气温变化一致,存在显著的温度效应,而降水量效应不明显。而且发现,研究区局地大气水线截距和斜率均低于全球的,反映了降水过程中云下二次蒸发作用较为强烈,特别是,不同的降水形态导致该研究区局地大气水线的斜率和截距不同。当液态降水(降雨)发生时,由于在较为干旱的气候环境下,雨滴在降落的过程中受到二次蒸发相对较强,使得局地大气水线的斜率和截距偏低;而当固态降水(降雪)发生时,由于温度较低,受再循环水汽和二次蒸发的影响较小,导致局地大气水线的斜率和截距均偏高。Bagrot山谷及其周边地区,从南到北局地大气水线的斜率相差不大,而其截距总体上随着纬度升高而降低,可能与云下二次蒸发导致稳定同位素发生的不平衡分馏逐渐强烈有关。通过Bagrot山谷站点降水稳定同位素观测结果并结合HYSPLIT模型的后向追踪,研究还发现,研究区全年主要受西风环流以及局地环流的影响。但与研究区以北的临近站点(慕士塔格、和田等)相比有所不同,由于Bagrot山谷位置更靠南,其仍然偶尔受到来自南方的海洋性水汽影响。这一研究结果可能对该地区树轮稳定同位素记录的解译具有一定的指示意义。

关键词: 印度河上游, 降水稳定同位素, 大气水线, 水汽来源

Abstract: Precipitation stable isotopes are integrated tracers of atmospheric processes worldwide. The precipitation stable isotopes (δ18O and δD) are influenced by numerous factors, including the condensation temperature, atmospheric humidity, air pressure, precipitation amounts, moisture sources and orographic terrain. In recent decades, many efforts have been dedicated to studying precipitation isotopic composition in various regions in the Tibetan Plateau,China,  located at the convergence between the westerlies and Indian monsoon. However, few studies are conducted in the Upper Indus Basin (UIB), which located in the western Tibetan Plateau. Based on the observation of precipitation stable isotopes (δ18O and δD) and local meteorological factors from August 2015 to July 2016, combining with the HYSPLIT model, this study investigated the characteristics of stable isotopes in precipitation, the relationship between isotopic variations and meteorological factors, Local Meteoric Water Line (LMWL), and the moisture sources of typical watershed in Bagrot Valley, Upper Indus Basin. The results show that precipitation δ18O and δD in Bagrot Valley displayed an obvious seasonal change. The δ18O and δD values are more depleted in autumn and winter but relatively enriched in spring and summer, indicating a significant temperature effec rather than precipitation amount effect. Moreover, the lower intercept and slope of Local Meteoric Water Line (LMWL) relative to GMWL indicated a strong sub-cloud evaporation owing to the relatively arid climate in the study area. Interestingly, different precipitation phases led to a difference in intercept and slope of meteoric water line. The lower intercept and slope of rainfall events result from strong sub-cloud evaporation. While meteoric water line of snowfall events has higher slope and intercept. It resulted from little impacts of recycled moisture and sub-cloud evaporation, due to the low temperature. Besides, compared with adjacent regions, the slopes of the LMWLs are nearly the same, however, the intercepts were increased with the latitude (except Shiquanhe), this may be caused by the strengthening sub-cloud evaporation and weakening effect of the marine moisture. In addition, the outputs of HYSPLIT model and results of precipitation stable isotopes demonstrated that Bagrot Valley is consistently dominated by the westerlies and local moisture recycling throughout the year and moisture source changes affect stable isotopes in precipitation. However, compared with Muztagata and Hotan, where marine moisture cannot reach, the study area of Bagrot Valley is affected by the marine moisture from the ocean occasionally as it lies southern to Muztagata and Hotan.

Key words: Upper Indus Basin, precipitation stable isotopes, meteoric water line, moisture sources