收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2023, Vol. 46 ›› Issue (7): 1133-1144.doi: 10.12118/j.issn.1000-6060.2022.481

• 植物生态 • 上一篇    下一篇

不同林分密度青海云杉林碳氮储量及其分配格局

冯宜明1(),吕春燕1,王零2(),赵维俊3,马雪娥3,杜军林1,何俊龄1   

  1. 1.河西学院,甘肃 张掖 734000
    2.甘肃祁连山国家级自然保护区管护中心,甘肃 张掖 734000
    3.甘肃省祁连山水源涵养林研究院,甘肃 张掖 734000
  • 收稿日期:2022-09-22 修回日期:2022-11-06 出版日期:2023-07-25 发布日期:2023-08-03
  • 通讯作者: 王零(1978-),男,硕士,正高级工程师,主要从事森林资源调查及经营管理研究. E-mail: 33936046@qq.com
  • 作者简介:冯宜明(1985-),男,博士,正高级工程师,主要从事森林生态与可持续经营研究. E-mail: fym850321@126.com
  • 基金资助:
    甘肃省自然科学基金项目(21JR7RA554);甘肃省自然科学基金项目(22JR5RA771);甘肃省陇原青年创新创业人才项目(2022LQGR28);国家自然科学基金项目(32060247);2022年度中央引导地方科技发展资金项目(22ZY2QG001);河西学院2020博士科研启动金项目(KYQD2020003)

Carbon and nitrogen storage and allocation patterns of Picea crassifolia forest with different stand density

FENG Yiming1(),LYU Chunyan1,WANG Ling2(),ZHAO Weijun3,MA Xue’e3,DU Junlin1,HE Junling1   

  1. 1. Hexi University, Zhangye 734000, Gansu, China
    2. Gansu Qilian Mountain National Nature Reserve Management Center, Zhangye 734000, Gansu, China
    3. Academy of Water Resources Conservation Forests in Qilian Mountains of Gansu Province, Zhangye 734000, Gansu, China
  • Received:2022-09-22 Revised:2022-11-06 Online:2023-07-25 Published:2023-08-03

摘要:

为深入了解青海云杉林生态系统碳、氮固持能力与循环及其影响机制,以不同林分密度(350株·hm-2、850株·hm-2、1000株·hm-2、1400株·hm-2、1600株·hm-2、1950株·hm-2、2100株·hm-2、2300株·hm-2、3000株·hm-2)青海云杉林为研究对象,通过野外调查、样品采集和室内分析,研究不同林分密度青海云杉林生态系统碳、氮储量及其分配格局。结果表明:(1)青海云杉林乔木碳、氮含量均值分别为497.11 g·kg-1和4.43 g·kg-1,各器官碳含量分配格局表现为干>根>叶>枝>皮,氮含量为叶>枝>根>皮>干;林下植被层碳、氮含量总体呈现灌木层>草本层>枯落物层,地上部分>地下部分;土壤层碳、氮含量随着林分密度的增加均呈下降趋势,并且随土层加深也逐渐减小。(2)青海云杉林生态系统碳储量随林分密度的增加呈双峰型分布,氮储量呈现先增加后波动降低的趋势,林分密度为850株·hm-2时林分碳、氮储量最高,分别为500.76 t·hm-2和25.00 t·hm-2,林分密度为3000株·hm-2时林分碳、氮储量均最低,分别为315.52 t·hm-2和12.52 t·hm-2;随林分密度增加,植被碳、氮储量占比逐渐升高,土壤碳、氮储量占比逐渐降低。碳储量分配格局为:土壤层(73.53%)>乔木层(17.03%)>灌草层和枯落物层(9.44%),氮储量分配格局为:土壤层(87.63%)>灌草层和枯落物层(9.90%)>乔木层(2.47%)。(3)林分密度与森林碳、氮储量及分配格局密切相关,低密度(850株·hm-2)利于植被和土壤碳、氮固持能力显著提高,是祁连山青海云杉中龄林的最佳留存密度。研究结果为揭示林分密度对森林生态系统碳氮固持能力的影响机制和森林结构化经营提供科学依据。

关键词: 林分密度, 青海云杉林, 碳、氮储量, 祁连山

Abstract:

This study investigated the carbon and nitrogen sequestration capacity and the recycling and influence mechanisms of the Picea crassifolia forest ecosystem in the Qilian Mountains, northwest China. The stand densities of 350 plants·hm−2, 850 plants·hm−2, 1000 plants·hm−2, 1400 plants·hm−2, 1600 plants·hm−2, 1950 plants·hm−2, 2100 plants·hm−2, 2300 plants·hm−2, and 3000 plants·hm−2 of P. crassifolia forest were considered for field investigation, sample collection and analysis, carbon and nitrogen storage, and allocation patterns of the P. crassifolia forest ecosystem. The results revealed that: (1) The mean carbon content value of the arbor layer in the P. crassifolia forest was 497.11 g·kg−1, and the nitrogen content was 4.43 g·kg−1. The allocation patterns of the carbon content in each organ followed the order of stem>root>leaf>branch>bark, and the distribution pattern of nitrogen content was leaf>branch>root>bark>trunk. The carbon and nitrogen content of the understorey vegetation layer generally exhibited a sequence of shrub layer>herb layer>litter layer, and the aboveground part>underground part. The content of carbon and nitrogen in the soil layer decreased with the increase in the stand density and decreased with the increase in the soil depth. (2) The carbon storage of the P. crassifolia forest ecosystem revealed a two-peak pattern distribution with the increase in the stand density. Nitrogen storage first increased and subsequently fluctuated with the increase in the stand density. When the density was 850 plants·hm−2, carbon and nitrogen storage were the highest (500.76 t·hm−2 and 25.00 t·hm−2, respectively), and when the density was 3000 plants·hm−2, the carbon and nitrogen storage were the lowest (315.52 t·hm−2 and 12.52 t·hm−2, respectively). With the increase in the stand density, the proportion of vegetation carbon and nitrogen storage gradually increased, and the proportion of soil carbon and nitrogen storage gradually decreased. The allocation patterns of carbon storage followed the order of the soil layer (73.53%)>tree layer (17.03%)>understory layer (9.44%), and nitrogen storage followed the soil layer (87.63%)>understory layer (9.90%)>tree layer (2.47%). (3) The results revealed that the stand density is closely related to forest carbon and nitrogen storage and allocation patterns. Low density (850 plants·hm−2) can improve carbon and nitrogen sequestration capacities of vegetation and soil, which is the best retention density of middle-aged P. crassifolia forest in the Qilian Mountains. The results provide a scientific basis for explaining the influence of the stand density on the carbon and nitrogen sequestration capacity of forest ecosystems and the structural management of forests.

Key words: stand density, Picea crassifolia forest, carbon and nitrogen storage, Qilian Mountains