Earth Information Sciences

Characteristics of precipitation in the Pamirs in 2017 based on WRF simulation

Expand
  • School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, Shaanxi, China

Received date: 2021-01-12

  Revised date: 2021-09-17

  Online published: 2021-12-03

Abstract

The Pamirs, found on the western edge of the Tibetan Plateau, spans the largest high-altitude area in Central Asia. Named the Central Asian Water Tower, this mountain range is the most important water source in Central Asia, where water resources are becoming increasingly tense. To efficiently utilize its limited water resources, researchers should elucidate the temporal and spatial changes in its atmospheric precipitation. However, the understanding of temporal and spatial variations in precipitation in the Pamirs is still insufficient mainly because of the high terrain of the Pamirs and the violent terrain undulations, resulting in the extremely limited spatial representation of observational data from a single site. Such understanding is also limited because of sparse meteorological observations and complex process of accurate precipitation data collection owing to the harsh natural environment of high-altitude mountainous areas. Consequently, atmospheric precipitation and hydrological processes in the Pamirs remain unclear. In this study, a WRF model was used to simulate and understand the temporal and spatial distribution of atmospheric precipitation in the Pamirs from December 2016 to November 2017 with a high resolution of 6 km. The re-analyzed data ERA5 and Grid data CPC were examined and compared with model results to explore the distribution characteristics of falling water centers in different resolution data. WRF simulation results exhibited good spatial correlation with CPC data, and the spatial distribution of precipitation was highly consistency. WRF restored the spatial distribution of precipitation on the plateau, and its high-resolution simulation yielded more details than other data. Simulation results further revealed the blocking effect of the Pamir’s high terrain on water vapor transport, causing the seasonal precipitation of the Pamirs to be mainly concentrated on windward slopes. In winter and spring, precipitation mainly occurred on windward slopes on the west side of the Pamirs. As altitude increased, precipitation increased and remained concentrated at 3000-5000 m above sea level. Precipitation in high-altitude areas was several times that in plain areas. Summer precipitation was mainly observed in the southern foot of the Pamirs. Summer monsoon could not penetrate deep into the plateau inland because of obstruction by the plateau; thus, precipitation at the top of the plateau in summer was <100 mm.

Cite this article

ZHANG Qian,DUAN Keqin . Characteristics of precipitation in the Pamirs in 2017 based on WRF simulation[J]. Arid Land Geography, 2021 , 44(6) : 1707 -1716 . DOI: 10.12118/j.issn.1000–6060.2021.06.19

References

[1] Immerzeel W W, Lutz A F, Andrade M, et al. Importance and vulnerability of the world’s water towers[J]. Nature, 2020, 577(7790):364-369.
[2] Pohl E, Knoche M, Gloaguen R, et al. The hydrological cycle in the high Pamir Mountains: How temperature and seasonal precipitation distribution influence stream flow in the Gunt catchment, Tajikistan[J]. Earth Surface Dynamics Discussions, 2014, 2(2):1155-1215.
[3] 易颖, 刘时银, 朱钰, 等. 2002—2018年叶尔羌河流域积雪时空变化研究[J]. 干旱区地理, 2021, 44(1):15-26.
[3] [ Yi Ying, Liu Shiyin, Zhu Yu, et al. Spatiotemporal variation of snow cover in the Yarkant River Basin during 2002—2018[J]. Arid Land Geography, 2021, 44(1):15-26. ]
[4] Lutz A F, Immerzeel W W, Kraaijenbrink P D, et al. Climate change impacts on the upper Indus hydrology: Sources, shifts and extremes[J]. PLoS One, 2016, 11(11):e0165630, doi: 10.1371/journal.pone.0165630.
[5] Mukhopadhyay B, Khan A. A reevaluation of the snowmelt and glacial melt in river flows within upper Indus Basin and its significance in a changing climate[J]. Journal of Hydrology, 2015, 527(1):119-132.
[6] Messerli B, Viviroli D, Weingartner R, et al. 世界山地: 21世纪脆弱的“水塔”[J]. AMBIO-人类环境杂志, 2004(增刊1):30-34, 57.
[6] [ Messerli B, Viviroli D, Weingartner R, et al. The mountains of the world: The fragile “Water Tower” in the 21 st century[J]. AMBIO-Journal of the Human Environment , 2004(Suppl. 1):30-34, 57. ]
[7] Immerzeel W W, Bierkens M F P. Seasonal prediction of monsoon rainfall in three Asian river basins: The importance of snow cover on the Tibetan Plateau[J]. International Journal of Climatology, 2010, 30(12):1835-1842.
[8] Pohl E, Gloaguen R, Seiler R. Remote sensing-based assessment of the variability of winter and summer precipitation in the Pamirs and their effects on hydrology and hazards using harmonic time series analysis[J]. Remote Sensing, 2015, 7(8):9727-9752.
[9] 郝海超, 郝兴明, 花顶, 等. 2000—2018年中亚五国水分利用效率对气候变化的响应[J]. 干旱区地理, 2021, 44(1):1-14.
[9] [ Hao Haichao, Hao Xingming, Hua Ding, et al. Response of water use efficiency to climate change in five Central Asian countries from 2000 to 2018[J]. Arid Land Geography, 2021, 44(1):1-14. ]
[10] 陈发虎, 陈建徽, 黄伟. 中纬度亚洲现代间冰期气候变化的“西风模式”讨论[J]. 地学前缘, 2009, 16(6):23-32.
[10] [ Chen Fahu, Chen Jianhui, Huang Wei. Discussion on the “westerly model” of mid-latitude Asian modern interglacial climate change[J]. Earth Science Frontier, 2009, 16(6):23-32. ]
[11] 蒋宗立, 王磊, 张震, 等. 2000—2014年喀喇昆仑山音苏盖提冰川表面高程变化[J]. 干旱区地理, 2020, 43(1):12-19.
[11] [ Jiang Zongli, Wang Lei, Zhang Zhen, et al. Surface elevation changes of Yengisogat Glacier between 2000 and 2014[J]. Arid Land Geography, 2020, 43(1):12-19. ]
[12] 陈发虎, 黄伟, 靳立亚, 等. 全球变暖背景下中亚干旱区降水变化特征及其空间差异[J]. 中国科学: 地球科学, 2011, 41(11):1647-1657.
[12] [ Chen Fahu, Huang Wei, Jin Liya, et al. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming[J]. Scientia Sinica (Terrae), 2011, 41(11):1647-1657. ]
[13] Bai Y Q, Wang J L, Wang Y J, et al. Spatio-temporal distribution of drought in the Belt and Road Area during 1998—2015 based on TRMM precipitation data[J]. Journal of Resources and Ecology, 2017, 8(6):559-570.
[14] Lioubimtseva E, Cole R, Adams J M, et al. Impacts of climate and land-cover changes in arid lands of Central Asia[J]. Journal of Arid Environments, 2005, 62(2):285-308.
[15] Huang W, Chen F H, Feng S, et al. Interannual precipitation variations in the mid-latitude Asia and their association with large-scale atmospheric circulation[J]. Chinese Science Bulletin, 2013, 58(32):3962-3968.
[16] Yin Z Y, Wang H L, Liu X D. A comparative study on precipitation climatology and interannual variability in the lower midlatitude east Asia and Central Asia[J]. Journal of Climate, 2014, 27(20):7830-7848.
[17] Aizen E M, Aizen V B, Melack J M, et al. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia[J]. International Journal of Climatology, 2001, 21(5):535-556.
[18] Bothe Oliver, Fraedrich Klaus, Xiuhua Z. Precipitation climate of Central Asia and the large-scale atmospheric circulation[J]. Theoretical and Applied Climatology, 2012, 108(3-4):345-354.
[19] Hu Z Y, Zhou Q M, Chen X, et al. Variations and changes of annual precipitation in Central Asia over the last century[J]. International Journal of Climatology, 2017, 37:157-170.
[20] Norris J, Carvalho L M V, Jones C, et al. The spatiotemporal variability of precipitation over the Himalaya: Evaluation of one-year WRF model simulation[J]. Climate Dynamics, 2016, 49(5-6):2179-2204.
[21] Qiu Y, Hu Q, Zhang C. WRF simulation and downscaling of local climate in Central Asia[J]. International Journal of Climatology, 2017, 37:513-528.
[22] 辛蕊, 段克勤. 2017年夏季秦岭降水的数值模拟及其空间分布[J]. 地理学报, 2019, 74(11):137-149.
[22] [ Xin Rui, Duan Keqin. Numerical simulation and spatial distribution of summer precipitation in the Qinling Mountains[J]. Acta Geographica Sinica, 2019, 74(11):137-149. ]
[23] Xie P P, Chen M Y, Yang S, et al. A gauge-based analysis of daily precipitation over east Asia[J]. Journal of Hydrometeorology, 2007, 8(3):607-626.
[24] Rana S, Mcgregor J, Renwick J. Wintertime precipitation climatology and ENSO sensitivity over central southwest Asia[J]. International Journal of Climatology, 2017, 37(3):1494-1509.
[25] 田亚林. 中亚地区极端降水时空分布及重现期分析[D]. 兰州: 兰州交通大学, 2020.
[25] [ Tian Yalin. Spatial-temporal distribution and return period analysis of extreme precipitation in Central Asia[D]. Lanzhou: Lanzhou Jiaotong University, 2020. ]
[26] 陈淑莹, 胡琪, 张弛, 等. WRF模式在天山地区模拟能力的敏感性评估[J]. 干旱区研究, 2019, 36(1):193-203.
[26] [ Chen Shuying, Hu Qi, Zhang Chi, et al. Evaluation on the sensitivity of WRF model in the Tianshan Mountains[J]. Arid Zone Research, 2019, 36(1):193-203. ]
[27] Caves J, Bayshashov B, Zhamangara A, et al. Tracking moisture pathways to Asia since the late Cretaceous: The competing influences of westerly and monsoonal dynamics[C]// Egu General Assembly Conference Abstracts. Egu, 2016: EPSC2016-10689.
[28] Tripathee L, Guo J, Kang S, et al. Spatial and temporal distribution of total mercury in atmospheric wet precipitation at four sites from the Nepal-Himalayas[J]. Science of the Total Environment, 2018, 655:1207-1217.
[29] 吴钩, 白爱娟. 青藏高原季风环流情况与中亚季风降水特征分析[J]. 成都信息工程大学学报, 2016, 31(1):76-85.
[29] [ Wu Gou, Bai Aijuan. Analysis on the characteristics of Tibetan Plateau’s monsoon circulation and Central Asia’s rainfall[J]. Journal of Chengdu University of Information Technology, 2016, 31(1):76-85. ]
[30] 史玉光, 孙照渤. 新疆水汽输送的气候特征及其变化[J]. 高原气象, 2008, 27(2):310-319.
[30] [ Shi Yuguang, Sun Zhaobo. Climate characteristics of water vapor transportation and its variation over Xinjiang[J]. Plateau Meteorology, 2008, 27(2):310-319. ]
[31] Bazhev A B, Kotlyakov V M, Varnakova G M. The problems of present-day glaciation of the Pamir-Alai [C]//Proceedings of the Moscow Symposium 1971. Wallingford: IAHS Publication, 1975, 104:11-21.
[32] Glazyrin G E. Influences of deglaciation on the river run-off in Central Asia[J]. Lëd i Sneg, 2013: doi: 10.15356/2076-6734-2013-3-20-25.
[33] 胡汝骥, 姜逢清, 王亚俊, 等. 中亚(五国)干旱生态地理环境特征[J]. 干旱区研究, 2014, 31(1):1-12.
[33] [ Hu Ruji, Jiang Fengqing, Wang Yajun, et al. Arid ecological and geographical conditions in five countrites of Central Asia[J]. Arid Zone Research, 2014, 31(1):1-12. ]
[34] 汤懋苍. 祁连山区降水的地理分布特征[J]. 地理学报, 1985, 12(4):323-332.
[34] [ Tang Maocang. The distribution of precipitation in mountain Qilian (Nanshan)[J]. Acta Geographica Sinica, 1985, 12(4):323-332. ]
[35] 陈炯, 王建捷. 边界层参数化方案对降水预报的影响[J]. 应用气象学报, 2006, 17(增刊1):11-17.
[35] [ Chen Jiong, Wang Jianjie. Mesoscale precipitation simulation sensitivity to PBL parameterization[J]. Journal of Applied Meteorological Science, 2006, 17(Suppl. 1):11-17. ]
[36] 吕光辉, 于恩涛, 向伟玲, 等. WRF模式分辨率对新疆异常降雨天气要素模拟的影响[J]. 气候与环境研究, 2009, 14(1):85-96.
[36] [ Lü Guanghui, Yu Entao, Xiang Weiling, et al. Effect of horizontal and vertical resolution on WRF simulation of the unusual rainfall event in Xinjiang[J]. Climatic and Environmental Research, 2009, 14(1):85-96. ]
[37] 陶健红, 张新荣, 张铁军, 等. WRF模式对一次河西暴雪的数值模拟分析[J]. 高原气象, 2008, 27(1):68-75.
[37] [ Tao Jianhong, Zhang Xinrong, Zhang Tiejun, et al. Simulation and analysis of heavy snowfall in the Hexi Corridor with WRF model[J]. Plateau Meteorology, 2008, 27(1):68-75. ]
[38] 许建伟, 高艳红. WRF模式对夏季黑河流域气温和降水的模拟及检验[J]. 高原气象, 2014, 33(4):937-946.
[38] [ Xu Jianwei, Gao Yanhong. Validation of summer surface air temperature and precipitation simulation over Heihe River Basin[J]. Plateau Meteorology, 2014, 33(4):937-946. ]
[39] 陈仁升, 康尔泗, 杨建平, 等. 内陆河流域分布式日出山径流模型——以黑河干流山区流域为例[J]. 地球科学进展, 2003, 18(2):198-206.
[39] [ Chen Rensheng, Kang Ersi, Yang Jianping, et al. A distributed daily runoff model of inland river mountainous basin[J]. Advances in Earth Science, 2003, 18(2):198-206. ]
[40] 舒守娟, 王元, 李艳. 西藏高原地形扰动对其降水分布影响的研究[J]. 水科学进展, 2006, 17(5):585-591.
[40] [ Shu Shoujuan, Wang Yuan, Li Yan. Effect of topographic perturbation on the precipitation distribution in Tibetan Plateau[J]. Advances in Water Science, 2006, 17(5):585-591. ]
Outlines

/