Earth Information Sciences

Structural parameters acquisition technology of Populus euphratica based on UAV

Expand
  • 1. College of Geography Science and Tourism, Xinjiang Normal University, Urumqi 830054, Xinjiang, China
    2. Xinjiang Key Laboratory of Lake Environment and Resources in Arid Zone, Urumqi 830054, Xinjiang, China

Received date: 2020-12-01

  Revised date: 2021-01-10

  Online published: 2021-04-14

Abstract

Obtaining the structural parameters of forests accurately and quickly is of great scientific significance. The technologies of polarimetric and interferometric synthetic-aperture radar, high-resolution optical satellite remote sensing, spaceborne lidar, and multi-angle satellite remote sensing can effectively obtain forest structure regionally. However, it is challenging to obtain structural parameters on a single-tree scale using these technologies. The rapid development of unmanned aerial vehicles (UAVs) recently provides a new means to obtain forest structures. The ground images can be obtained using UAV ordinary cameras, and the ground point cloud can be obtained using structure from motion photogrammetry technology for 3D reconstruction, generating digital surface model, digital elevation model (DEM), and canopy height model (CHM). The local maximum algorithm is used to process CHM data. The key to the local maximum algorithm is to select an appropriate window size and find the largest grid value (seed point) in the window as the highest point of the tree crown to represent the tree. However, it is challenging to calculate the window size. One solution is to use the variable window method. In this study, the height and crown diameter of 49 Populus euphratica trees were measured in the lower reaches of the Tarim River, Xinjiang, China. The Populus euphratica were counted in a 251 hm2 grid, and a DJI Phantom 4 Pro was used to acquire the image data. The DJI Phantom 4 Pro is a consumer-grade UAV using oblique and ortho photogrammetry, respectively. An adaptive window maxima algorithm was proposed to analyze and process CHM data, obtaining the structural parameters of the Populus euphratica forest in the study area, such as tree height, crown diameter, and number of trees. The structural parameters extracted using oblique and ortho photogrammetry were compared and analyzed with field-measured data. The results and conclusions are (1) the adaptive window maxima algorithm and fixed window maximum algorithm (1.5-, 2.0-, 2.5-, and 3.0-m fixed windows, respectively) were used to process CHM data obtained using oblique photogrammetry to generate Populus euphratica seed points. The data are compared with the statistical data of 25 sample plots. The R2 of fixed window values vary widely from 0.7834 to 0.8261, indicating that we should choose an appropriate window size to achieve higher accuracy according to the actual situation of the region. While the R2 of the adaptive window maxima algorithm is the highest (0.8341), it can achieve higher accuracy because the algorithm reduces the window size dependence. (2) The tree height measured using oblique and ortho photogrammetry is overestimated, and the crown diameter is underestimated. The mean, median, and distribution of tree height and crown diameter obtained using ortho photogrammetry are closer to the field-measured values, indicating that oblique photogrammetry could achieve more accurate results than ortho photogrammetry. (3) The oblique photogrammetry and field-measured data were compared to determine the coefficients (R2) of tree height, crown diameter, and tree numbers per hectare (0.9002, 0.8403, and 0.9405, respectively). The root means squared error was 0.4457, 0.6815, and 4.2500, respectively. The results prove that it is effective to use a consumer-grade UAV to obtain forest structure parameters on a single-tree scale using an appropriate measurement method and processing algorithm.

Cite this article

YANG Xuefeng,ZAN Mei,Munire MAIMAITI . Structural parameters acquisition technology of Populus euphratica based on UAV[J]. Arid Land Geography, 2021 , 44(2) : 441 -449 . DOI: 10.12118/j.issn.1000–6060.2021.02.15

References

[1] Rdig E, Cuntz M, Rammig A, et al. The importance of forest structure for carbon flux estimates in the Amazon rainforest[J]. Environmental Research Letters, 2018,13(5):054013, doi: 10.1088/1748-9326/aabc61.
[2] Houghton R A, Hall F, Goetz S J. Importance of biomass in the global carbon cycle[J]. Journal of Geophysical Research: Bio-geoences, 2009,114(G2):1-13.
[3] Garestier F, Dubois-Fernandez P C, Guyon D, et al. Forest biophysical parameter estimation using L and P-band polarimetric SAR data[J]. IEEE Transactions on Geoscience & Remote Sensing, 2009,47(10):3379-3388.
[4] 李文梅, 李增元, 陈尔学, 等. 层析SAR反演森林垂直结构参数现状及发展趋势[J]. 遥感学报, 2014,18(4):741-751.
[4] [ Li Wenmei, Li Zengyuan, Chen Erxue, et al. Status and development of tomographic SAR for forest vertical structural parameters inversion[J]. Journal of Remote Sensing, 2014,18(4):741-751. ]
[5] Lei Y, Siqueira P. Estimation of forest height using spaceborne repeat-pass L-band InSAR correlation magnitude over the US State of Maine[J]. Remote Sensing, 2014,6(11):10252-10285.
[6] 崔少伟, 范文义, 金森, 等. 基于树影与快鸟图像的单木树高提取[J]. 东北林业大学学报, 2011,39(2):47-50.
[6] [ Cui Shaowei, Fan Wenyi, Jin Sen, et al. Extraction of individual tree height using quickbird images based on tree shadow[J]. Journal of Northeast Forestry University, 2011,39(2):47-50. ]
[7] Ke Y, Quackenbush L J. A comparison of three methods for automatic treecrown detection and delineation from high spatial resolution imagery[J]. International Journal of Remote Sensing, 2011,32(13):3625-3647.
[8] Gomes M F, Maillard P. Using spectraland textural features from RapidEye images to estimate age and structural parameters of Cerrado vegetation[J]. International Journal of Remote Sensing, 2015,36(11-12):3058-3076.
[9] Nie S, Wang C, Zeng H, et al. A revised terrain correction method for forest canopy height estimation using ICESat/GLAS data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,108:183-190.
[10] 吴迪. 基于GLAS和MISR数据的森林冠层高度和地上生物量遥感估算研究[D]. 哈尔滨: 东北林业大学, 2015.
[10] [ Wu Di. Forest canopy height and aboveground biomass estimation based on GLAS and MISR data[D]. Harbin: Northeast Forestry University, 2015. ]
[11] Chopping M, Nolin A, Moisen G G, et al. Forest canopy height from the Multiangle Imaging Spectro-Radiometer assessed with high resolution discrete return lidar[J]. Remote Sensing of Environment, 2009,113(10):2172-2185.
[12] Chopping M, Crystal S, Feng Zhao, et al. Forest structure and aboveground biomass in the southwestern United States from MODIS and MISR[J]. Remote Sensing of Environment, 2011,115(11):2940-2953.
[13] 胡凯龙, 刘清旺, 崔希民, 等. 多源遥感数据支持下的区域性森林冠层高度估测[J]. 武汉大学学报: 信息科学版, 2018,43(2):289-296, 303.
[13] [ Hu Kailong, Liu Qingwang, Cui Ximing, et al. Regional forest canopy height estimation using multi-source remote sensing data[J]. Geomatics and Information Science of Wuhan University, 2018,43(2):289-296, 303. ]
[14] Sherrill K R, Lefsky M A, Bradford J B, et al. Forest structure estimation and pattern exploration from discrete-return lidar in subalpine forests of the central Rockies[J]. Revue Canadienne De Recherche Forestière, 2008,38(8):2081-2096.
[15] 霍达. 基于机载LiDAR反演森林参数的研究——以内蒙古依根地区为例[D]. 哈尔滨: 东北林业大学, 2015.
[15] [ Huo Da. Study on inversion of forest parameters based on airborne LiDAR[D]. Harbin: Northeast Forestry University, 2015. ]
[16] 韦雪花. 轻小型航空遥感森林几何参数提取研究[D]. 北京: 北京林业大学, 2013.
[16] [ Wei Xuehua. Research of forestry geometrical parameter extraction with light and small airborne remote sensing system[D]. Beijing: Beijing Forestry University, 2013. ]
[17] Iglhaut J, Cabo C, Puliti S, et al. Structure from motion photogrammetry in forestry: A review[J]. Current Forestry Reports, 2019,5(3):1-14.
[18] Nex F, Remondino F. UAV for 3D mapping applications: A review[J]. Applied Geo-matics, 2014,6(1):1-15.
[19] Panagiotidis D, Abdollahnejad A, Surovy P, et al. Determining tree height and crown diameter from high-resolution UAV imagery[J]. International Journal of Remote Sensing, 2017,38(8-10):2392-2410.
[20] Mohan M, Silva C A, Klauberg C, et al. Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest[J]. Forests, 2017,8(9):340-354.
[21] Cao L, Liu H, Fu X, et al. Comparison of UAV LiDAR and digital aerial photogrammetry point clouds for estimating forest structural attributes in subtropical planted forests[J]. Forests, 2019,10(2):145-160.
[22] 岳健, 穆桂金, 唐自华, 等. 基于NDVI的新疆荒漠地区植被覆盖度遥感估算经验模型研究[J]. 干旱区地理, 2020,43(1):153-160.
[22] [ Yue Jian, Mu Guijin, Tang Zihua, et al. Remote sensing estimation models for vegetation coverage in desert regions of Xinjiang based on NDVI[J]. Arid Land Geography, 2020,43(1):153-160. ]
[23] Grznárová A, Mokro M, Surov P, et al. The crown diameter estimation from fixed wing type of UAV imagery[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, XLII-2/W13:337-341.
[24] Anders N, Keesstra S, Cammeraat E. The effect of flight altitude to data quality of fixed-wing UAV imagery: Case study in Murcia, Spain[C]// EGU General Assembly Conference Abstracts, 2014.
[25] 李晓靖. 基于高分影像的面向对象分类与单木树冠提取研究[D]. 北京: 北京林业大学, 2017.
[25] [ Li Xiaojing. Study on object oriented classification and individual tree crown extraction based on high resolution imagery[D]. Beijing: Beijing Forestry University, 2017. ]
[26] 郭昱杉, 刘庆生, 刘高焕, 等. 基于标记控制分水岭分割方法的高分辨率遥感影像单木树冠提取[J]. 地球信息科学学报, 2016,18(9):1259-1266.
[26] [ Guo Yushan, Liu Qingshen, Liu Gaohuan, et al. Individual tree crown extraction of high resolution image based on marker-controlled watershed segmentation method[J]. Journal of Geo-Information Science, 2016,18(9):1259-1266. ]
[27] 冯静静, 张晓丽, 刘会玲. 基于灰度梯度图像分割的单木树冠提取研究[J]. 北京林业大学学报, 2017,39(3):16-23.
[27] [ Feng Jing-jing, Zhang Xiaoli, Liu Huiling. Single tree crown extraction based on gray gradient image segmentation[J]. Journal of Beijing Forestry University, 2017,39(3):16-23. ]
[28] 何艺, 周小成, 黄洪宇, 等. 基于无人机遥感的亚热带森林林分株数提取[J]. 遥感技术与应用, 2018,33(1):168-176.
[28] [ He Yi, Zhou Xiaochen, Huang Hongyu, et al. Counting tree number in subtropical forest districts based on UAV remote sensing images[J]. Remote Sensing Technology and Application, 2018,33(1):168-176. ]
[29] 杨礼. 融合UAV遥感影像与SFM点云的树木识别及参数提取[D]. 焦作: 河南理工大学, 2018.
[29] [ Yang Li. Tree parameters extraction using UAV remote sensing image and SFM point cloud[D]. Jiaozuo: Henan Polytechnic University, 2018. ]
[30] 汪霖, 李明阳, 方子涵, 等. 基于无人机数据的人工林森林参数估测[J]. 林业资源管理, 2019(5):61-67.
[30] [ Wang Lin, Li Mingyang, Fang Zihan, et al. Plantation forest parameter estimation based on UAV data[J]. Forest Resources Management, 2019(5):61-67. ]
[31] Daley N M A, Burnett C N, Wulder M, et al. Comparison of fixed-size and variablesized windows for the estimation of tree crown position[C]// IEEE International Geoscience & Remote Sensing Symposium. IEEE, 1998.
[32] 李响, 甄贞, 赵颖慧. 基于局域最大值法单木位置探测的适宜模型研究[J]. 北京林业大学学报, 2015,37(3):27-33.
[32] [ Li Xiang, Zhen Zhen, Zhao Yinghui. Suitable model of detecting the position of individual tree top based on local maximum method[J]. Journal of Beijing Forestry University, 2015,37(3):27-33. ]
[33] 于军, 白冠章, 梁继业, 等. 塔里木河上、中、下游胡杨种群高度结构特征[J]. 干旱区资源与环境, 2012,26(7):103-109.
[33] [ Yu Jun, Bai Guanzhang, Liang Jiye, et al. The height structure characteristics of Populus euphratica population along Tarim River[J]. Journal of Arid Land Resources and Environment, 2012,26(7):103-109. ]
[34] 蔡富艳, 玉米提·哈力克, 艾尔肯·艾白不拉, 等. 塔里木河下游阿拉干断面胡杨树高的分布和密度[J]. 生态环境, 2008,17(3):1086-1090.
[34] [ Cai Fuyan, Umut Halik, Arkin Abibul, et al. Tree height distribution and density of Populus euphratica forest along the Argan section in the lower reaches of Tarim River[J]. Ecology and Environment, 2008,17(3):1086-1090. ]
[35] 万红梅, 李霞, 董道瑞, 等. 塔里木河下游林地树冠QuickBird 影像信息提取与分析[J]. 西北植物学报, 2011,31(9):1878-1885.
[35] [ Wan Hongmei, Li Xia, Dong Daorui, et al. Abstraction and analysis of tree-crown of forest land based on QuickBird image in the lower reaches of Tarim River[J]. Acta Botanica Boreali-Occidentalia Sinica, 2011,31(9):1878-1885. ]
[36] 李越帅, 郑宏伟, 罗格平, 等. 集成U-Net方法的无人机影像胡杨树冠提取和计数[J]. 遥感技术与应用, 2019,34(5):939-949.
[36] [ Li Yueshuai, Zheng Hongwei, Luo Geping, et al. Extraction and counting of Populus euphratica crown using UAV images integrated with U-Net method[J]. Remote Sensing Technology and Application, 2019,34(5):939-949. ]
[37] Aishan Tayierjiang, Halik Umut Florianbet z, , et al. Stand structure and height-diameter relationship of a degraded Populus euphratica forest in the lower reaches of the Tarim River, Northwest China[J]. Journal of Arid Land, 2015,7(4):544-554.
[38] 杨勇长. Oruxmaps软件在森林资源清查中的应用[J]. 福建林业, 2014(3):46-48.
[38] [ Yang Yongchang. Application of oruxmaps software in forest resources inventory[J]. Fujian Forestry, 2014(3):46-48. ]
[39] San J, Wanshou J, Wei H, et al. UAV-based oblique photogrammetry for outdoor data acquisition and offsite visual inspection of transmission line[J]. Remote Sensing, 2017,9(3):278-290.
[40] Liu Y, Zheng X, Ai G, et al. Generating a high-precision true digital orthophoto map based on UAV images[J]. Isprs International Journal of Geo Information, 2018,7(9):333-338.
[41] 孙春辉, 成锡平. 基于无人机的实景三维建模在消防中的应用[J]. 消防科学与技术, 2018,37(4):501-504.
[41] [ Sun Chunhui, Cheng Xiping. Application of real 3D modeling in firefighting based on UAV[J]. Fire Science and Technology, 2018,37(4):501-504. ]
[42] Micha? Brach, Chan C W, Pawe? Szymański. Accuracy assessment of different photo-grammetric software for processing data from low- cost UAV platforms in forest conditions[J]. iForest Biogeosciences and Forestry, 2019,12:435-441.
Outlines

/